• Title/Summary/Keyword: Energy Dynamics

Search Result 1,642, Processing Time 0.029 seconds

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

A Dynamic Approach for Evaluating the Validity of Boosting Pocliies for Green Standard for Energy and Environmental Design Certification (시스템 다이내믹스를 이용한 녹색건축인증제도 활성화 정책의 실효성 평가)

  • Kim, Jung-Hwa;Lee, Hyun-Soo;Park, Moonseo;Lee, Seulbi
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Since 2002, Korea Government has introduced Green Standard for Energy and Environmental Design Certification for reducing GHG emission in building area. However, total number of G-SEED Certification is only around 1% of total number of approved apartment buildings despite the various boosting policies. In this situation, most boosting policies and policy improvement researches are leaning toward the supplier's aspect. However, comprehensive relation and dynamics between consumer and supplier has to be considered because housing market is operated by market participants' mutual interaction. Therefore, this research presents system dynamics models based on decision making analysis of consumer and supplier in G-SEED Certification apartment building market. Then, this research evaluate the validity of boosting policies using the model. The proposed analysis can assist government to make next G-SEED Certification boosting policy.

Molecular dynamics study of redeposition effect by Ar ion bombardments on Au, Pd(001) (Ar이온 충돌에 의한 Au, Pd(001) 표면에서 재증착 효과의 분자동역학 연구)

  • Kim, S.P.;Kim, S.J.;Kim, D.Y.;Chung, Y.C.;Lee, K.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Atomic behavior during ion beam sputtering was investigated by using classical molecular dynamics simulation. When Ar ion bombards on Au and Pd(001) surface with various incidence energies and angles, some atoms which gained substantial energy by impacting Ar ion were sputtered out and, simultaneously, others were landed on the surface as if surface atoms were redeposited. It was observed that the redeposited atoms are five times for Au and three times for Pd as many as sputtered atoms irrespective of both incidence energy and angle. From sequential ion bombarding calculations, contrary to the conventional concepts which have described the mechanism of surface pattern formation based only on the erosion theory, the redeposition atoms were turned out to play a significant role in forming the surface patterns.

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing (세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok;Ahn, Kookyoung;Lee, Youngduk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL (GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰)

  • Kim, Han-Sang;Ji, Yong-Whi;In, Ji-Hyun;An, Ji-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.

Elongation Behavior of Polymeric Materials for Membrane Applications Using Molecular Dynamics (분자동역학을 이용한 분리막용 소재로 사용되는 고분자 소재의 신장거동 연구)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2022
  • Recently, computer simulation research has been rapidly increasing due to the development of computer and software technology. In particular, various computational simulation results related to polymers, which were previously limited by problems of the number of atoms and model size, are being published. In this study, a study was conducted to analyze the mechanical properties, one of the important properties for using a polymer material as a membrane, using molecular dynamics (MD) simulation. To this end, polyethylene (PE) and polystyrene (PS), which are commercial polymer materials with widely reported related properties, were selected as polymer models and the tensile properties of each polymer were compared through the difference in main chain length. Through the density, radius of gyration, and scattering analysis, it was found that the model produced in this study was in good agreement with the mechanical property trends obtained in the actual experiment. It is expected to enable the prediction of mechanical properties of various polymer materials for membrane fabrication.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.