DOI QR코드

DOI QR Code

Molecular dynamics study of redeposition effect by Ar ion bombardments on Au, Pd(001)

Ar이온 충돌에 의한 Au, Pd(001) 표면에서 재증착 효과의 분자동역학 연구

  • Kim, S.P. (Computational Science Center, KIST) ;
  • Kim, S.J. (Computational Science Center, KIST) ;
  • Kim, D.Y. (Department of Materials Science and Engineering, Seoul National University) ;
  • Chung, Y.C. (Division of Materials Science Engineering, Hanyang University) ;
  • Lee, K.R. (Computational Science Center, KIST)
  • 김상필 (한국과학기술연구원 계산과학센터) ;
  • 김세진 (한국과학기술연구원 계산과학센터) ;
  • 김도연 (서울대학교 재료공학부) ;
  • 정용재 (한양대학교 신소재공학부) ;
  • 이광렬 (한국과학기술연구원 계산과학센터)
  • Published : 2008.03.30

Abstract

Atomic behavior during ion beam sputtering was investigated by using classical molecular dynamics simulation. When Ar ion bombards on Au and Pd(001) surface with various incidence energies and angles, some atoms which gained substantial energy by impacting Ar ion were sputtered out and, simultaneously, others were landed on the surface as if surface atoms were redeposited. It was observed that the redeposited atoms are five times for Au and three times for Pd as many as sputtered atoms irrespective of both incidence energy and angle. From sequential ion bombarding calculations, contrary to the conventional concepts which have described the mechanism of surface pattern formation based only on the erosion theory, the redeposition atoms were turned out to play a significant role in forming the surface patterns.

분자동역학을 이용하여 이온빔 스퍼터링 과정에서 원자의 거동을 연구하였다. Ar이온이 Au와 Pd(001) 표면에 다양한 에너지와 입사각도로 충돌할 때, 표면원자들 중 일부는 공간으로 떨어져 나갔으며, 반응 후 일부 원자들은 초기 표면보다 위쪽에 재증착 되는 현상이 관찰되었다. 재증착 원자의 수율은 스퍼터된 원자보다 Au의 경우 약 5배, Pd의 경우 약 3배 많이 입사 에너지와 입사 각도에 상관없이 발생됨을 확인하였다. 연속된 입사계산을 통해, 스퍼터링 과정에 발생되는 다양한 표면 패턴 형성 메커니즘을 식각만으로 설명하고 있는 종래의 개념과는 달리, 이온빔으로 인해 끊임없이 발생되는 재증착 원자들이 표면의 구조를 형성하는데 중요한 역할을 하는 것으로 확인되었다.

Keywords

References

  1. M. V. R. Murty, Surf. Sci. 500, 523 (2002) https://doi.org/10.1016/S0039-6028(01)01586-2
  2. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285, 1551 (1999) https://doi.org/10.1126/science.285.5433.1551
  3. C. W. Chan, and E. Chason, J. Appl. Phys. 101, 121301 (2007) https://doi.org/10.1063/1.2749198
  4. M. J. Aziz, Ion Beam Science: Solved and Unsolved Problems (Karada Publishing Services, Slovenia, 2006) pp.187-206
  5. S. Vogel, and S. J. Linz, Europhys. Lett. 76(5), 884 (2006) https://doi.org/10.1209/epl/i2006-10349-4
  6. U. Valbusa, C. Boragno, and B. Mongeot, Mater. Sci. and Eng. C 23, 201 (2003) https://doi.org/10.1016/S0928-4931(02)00268-0
  7. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan E, and S. C. A. Lien, Nature 411, 56 (2001) https://doi.org/10.1038/35075021
  8. O. Azzaroni, P. L. Schilardi, R. C. Salvarezza, R. Gago, and L. Vazquez, Appl. Phys. Lett. 82, 457 (2003) https://doi.org/10.1063/1.1537867
  9. Y. J. Chen, J. P. Wang, E. W. Soo, L. Wu, and T. C. Chong, J. Appl. Phys. 91, 7323 (2002) https://doi.org/10.1063/1.1447494
  10. R. Moroni, D. Sekiba, B. Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, Phys. Rev. Lett. 91, 167207 (2003) https://doi.org/10.1103/PhysRevLett.91.167207
  11. L. Vattuone, U. Burghaus, L. Savio, M. Rocca, G. Costantini, F. Mongeot, C. Boragno, S. Rusponi, and U. Valbusa, J. Chem. Phys. 115, 3346 (2001) https://doi.org/10.1063/1.1386432
  12. K. C. Ruthe, and S. A. Barnett, Surf. Sci. 538, L460 (2003) https://doi.org/10.1016/S0039-6028(03)00601-0
  13. P. Sigmund, J. Mater. Sci. 8, 1545 (1973) https://doi.org/10.1007/BF00754888
  14. R. M. Bradley, and J. M. E. Harper, J. Vac. Sci. Technol. A 6(4), 2390 (1988) https://doi.org/10.1116/1.575561
  15. I. Koponen, O.-P. Sievanen, M. Hautala, and M. Hakovirta, J. Appl. Phys. 82(12), 6047 (1997) https://doi.org/10.1063/1.366472
  16. M. Castro, R. Cuerno, L. Vazquez, and R. Gago, Phys. Rev. Lett. 94, 016102 (2005) https://doi.org/10.1103/PhysRevLett.94.016102
  17. S. Facsko, T. Bobek, A. Stahl, and H. Kurz, Phys. Rev. B 69, 153412 (2004) https://doi.org/10.1103/PhysRevB.69.153412
  18. W. Fan, L. Ling, L. Qi, W. Li, H. Sun, C. Gu, Y. Zhao, and M. Lu, J. Phys.: Condens. Matter 18, 3367 (2006) https://doi.org/10.1088/0953-8984/18/13/004
  19. A. Friedrich, and H. M. Urbassek, Surf. Sci. 547, 315 (2003) https://doi.org/10.1016/j.susc.2003.09.022
  20. E. M. Bringa, K. Nordlund, and J. Keinonen, Phys. Rev. B 64, 235426 (2001) https://doi.org/10.1103/PhysRevB.64.235426
  21. S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B 33, 7983 (1986) https://doi.org/10.1103/PhysRevB.33.7983
  22. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York 1985)
  23. M. A. Karolewski, Nucl. Instr. and Meth. in Phys. Res. B 230, 402 (2005) https://doi.org/10.1016/j.nimb.2004.12.074
  24. R. Smith, M. Shaw, R. P. Webb, and M. A. Foad, J. Appl. Phys. 83, 3148 (1998) https://doi.org/10.1063/1.367072
  25. V. Belko, M. Posselt, and E. Chagarov, Nucl. Instr. and Meth. in Phys. Res. B 202, 18 (2003) https://doi.org/10.1016/S0168-583X(02)01825-6
  26. A. Friedrich, and H. M. Urbassek, Surf. Sci. 547, 315 (2003) https://doi.org/10.1016/j.susc.2003.09.022
  27. T. Michely, and C. Teichert, Phys. Rev. B 50, 11156 (1994) https://doi.org/10.1103/PhysRevB.50.11156
  28. H. Gades, and H. Urbassek, Phys. Rev. B 50, 11167 (1994) https://doi.org/10.1103/PhysRevB.50.11167
  29. P. Mishra, and D. Ghose, Phys. Rev. B 74, 155427 (2006) https://doi.org/10.1103/PhysRevB.74.155427
  30. C.J. Smith, Metal Reference Book (Butterworths, London 1976)

Cited by

  1. Anisotropic rearrangement of the substrate atoms during Ar bombardment on Pd(001) surface vol.269, pp.21, 2011, https://doi.org/10.1016/j.nimb.2011.07.093
  2. High-Resolution X-Ray Photoelectron Spectroscopy Study of a Sb2Te3Thin Film with the Polycrystalline Phase vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.348