• Title/Summary/Keyword: Energy Diffusion

Search Result 1,547, Processing Time 0.039 seconds

Estimation of Potential Supply of Offset from Household Electric Appliances (가정용 전자기기의 잠재 상쇄 공급량 추정)

  • Jin, Hyun Joung;Kim, Jeong In;You, Eun Young;Park, Seo Hwa
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.463-488
    • /
    • 2015
  • A more detailed design of offset system is needed according to the emission trading system started in 2015. This study aims to estimate the supply of potential offset that can be secured by expanding high-efficiency household electric appliances. The target commodities for analysis are three different householding electric appliances: TV, washing machine, electric fan, refrigerator and air conditioner. By using the ARDL model, we estimated the coefficients of diffusion of these high-efficiency appliances from 2016 to 2022. Then, the potential supply of offset was drawn by calculating the amount of electricity saving by efficiency improvement and by applying the rates of carbon exchange. Supposing that the electricity savings rates of high-efficiency appliances are each 10% and 20%, the accumulated carbon decrement in 2022 was respectively $361,899CO_2t$ and $723,797CO_2t$. The appliance that showed the biggest carbon decrement was air conditioner, and the second biggest was refrigerator and the next was TV, followed by washing machine, electric fan.

Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction

  • Housiadas Kostas D.;Beris Antony N.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • In this work we show the results of our most recent Direct Numerical Simulations (DNS) of turbulent viscoelastic channel flow using spectral spatial approximations and a stabilizing artificial diffusion in the viscoelastic constitutive model. The Finite-Elasticity Non-Linear Elastic Dumbbell model with the Peterlin approximation (FENE-P) is used to represent the effect of polymer molecules in solution, The corresponding rheological parameters are chosen so that to get closer to the conditions corresponding to maximum drag reduction: A high extensibility parameter (60) and a moderate solvent viscosity ratio (0.8) are used with two different friction Weissenberg numbers (50 and 100). We then first find that the corresponding achieved drag reduction, in the range of friction Reynolds numbers used in this work (180-590), is insensitive to the Reynolds number (in accordance to previous work). The obtained drag reduction is at the level of $49\%\;and\;63\%$, for the friction Weissenberg numbers 50 and 100, respectively. The largest value is substantially higher than any of our previous simulations, performed at more moderate levels of viscoelasticity (i.e. higher viscosity ratio and smaller extensibility parameter values). Therefore, the maximum extensional viscosity exhibited by the modeled system and the friction Weissenberg number can still be considered as the dominant factors determining the levels of drag reduction. These can reach high values, even for of dilute polymer solution (the system modeled by the FENE-P model), provided the flow viscoelasticity is high, corresponding to a high polymer molecular weight (which translates to a high extensibility parameter) and a high friction Weissenberg number. Based on that and the changes observed in the turbulent structure and in the most prevalent statistics, as presented in this work, we can still rationalize for an increasing extensional resistance-based drag reduction mechanism as the most prevalent mechanism for drag reduction, the same one evidenced in our previous work: As the polymer elasticity increases, so does the resistance offered to extensional deformation. That, in turn, changes the structure of the most energy-containing turbulent eddies (they become wider, more well correlated, and weaker in intensity) so that they become less efficient in transferring momentum, thus leading to drag reduction. Such a continuum, rheology-based, mechanism has first been proposed in the early 70s independently by Metzner and Lamley and is to be contrasted against any molecularly based explanations.

Contribution of a Low-Barrier Hydrogen Bond to Catalysis Is Not Significant in Ketosteroid Isomerase

  • Jang, Do Soo;Choi, Gildon;Cha, Hyung Jin;Shin, Sejeong;Hong, Bee Hak;Lee, Hyeong Ju;Lee, Hee Cheon;Choi, Kwan Yong
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. ${\Delta}^5$-3-ketosteroi isomerase (KSI) catalyzes the allylic isomerization of ${\Delta}^5$-3-ketosteroid to its conjugated ${\Delta}^4$-isomers at a rate that approache the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 $O{\eta}$ and C3-O of equilenin an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 $O{\eta}$ and C3-O of the bound steroi was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.

Self-forming Barrier Process Using Cu Alloy for Cu Interconnect

  • Mun, Dae-Yong;Han, Dong-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.189-190
    • /
    • 2011
  • Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance (RC) delay나 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 SiO2와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 SiO2 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200 도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 SiO2와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장 했다. 이는 V의 oxide formation nergyrk Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, V+5 이온 반경이 Mn+2 이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.

  • PDF

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Frequency Characteristics of Anodic Oxide Films on Tantalum

  • Lee, Dong-Nyung;Yoon, yong-Ku
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 1973
  • The Nishitani's equations for impedance of anodic oxide films have been derived based on a p-i-n model under the assumption of $\omega$$\varepsilon$$\rho$$_{ο}$<<4$\pi$<<$\omega$$\varepsilon$$\rho$$_{\omega}$, where $\omega$ is angular frequency, $\varepsilon$ is dielectric constant, and $\rho$$_{ο}$ and $\rho$$_{\omega}$ are the resistivity of the interface region and the intrisic region of the anodic oxide film, respectively. Since it is not possible to evaluate all parameters in the equations, however, any clear physical picture cannot be obtained from the equations. Therefore, the equations are modified under the assumption of $\omega$$\tau$$_{\omega}$>>1 and In(1+$\omega$$^2$$\tau$$_{ο}$$^2$)<<1, where $\tau$$_{\omega}$=$\varepsilon$$\rho$$_{\omega}$(4$\pi$) and $\tau$$_{ο}$=$\varepsilon$$\rho$$_{ο}$/(4$\pi$). The modified equations are then used to explain the change in the frequency characteristics of anodic oxide films when they are heated. The change in impedance of anodic oxide films when they are heated is attributed mainly to the increase in the diffusion layer and to the decrease in the resistivity of anodic oxide films.s.

  • PDF

The Effects of Relationship between Universities, Public Research Institutes and External Organizations on Performance of Technology Transfer : based of Triple Helix Model (대학·공공연구소와 외부기관과의 관계가 기술이전 성과에 미치는 영향 : Triple Helix 모형을 기반으로)

  • Son, Hosung;Chung, Yanghon;Yoon, Sangpil
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.587-614
    • /
    • 2018
  • The Korean government is aiming to strengthen industrial and national competitiveness through the promotion of cooperation between universities, public research institutes and industry and vitalization of technology transfer. In 2013 and 2014, the Ministry of Trade, Industry and Energy and Ministry of Science, ICT and Future Planning have announced policies to support SMEs by public research organizations. In addition, in 2015, the 'Korean Fraunhofer support system', which pay government subsidies according to the amounts of private R&D funds was adopted. However, there are some concern about the government's policies. There is yet disclosed how these policies affect technology transfer because industrial R&D funding has not been activated in Korea unlike German. Therefore this paper analyzes effects of relationship between universities, public research institutes and external organizations on performance of technology transfer based on the Triple Helix Model. Empirical results show that the relationship with the government has a significant impact on the resource security and the relationship with the industry has a significant effect on the diffusion of the performance. In addition, a public research institute was selected and case analysis was conducted to suggest policy implications for improving the technology transfer performance of universities and public research institutes.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Kinetic Studies on Cooking of Rice of Various Polishing Degrees (도정도별 쌀의 취반에 대한 역학적 연구)

  • Cheigh, Hong-Sik;Kim, Sung-Kon;Pyun, Yu-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.52-56
    • /
    • 1978
  • The mechanism of cooking rice was investigated using a japonica type rice variety, Akibare, of 50%, 70% and 90% polishing degrees. The hardness of rice cooked at various cooking temperatures ($90^{\circ}-120^{\circ}C$) was measured with a Texturometer. The cooking rate followed the equation of a first-order reaction. The reaction rate constants were in the increasing order of 50%, 70% and 90% polished rice. The temperature coefficient of the reaction rate constant at cooking temperatures of ($90^{\circ}-100^{\circ}C$) was about 2 in all rice samples. The activation energies of cooking at temperatures below $100^{\circ}C$ and above $100^{\circ}C$ were about 17,000 and 9,000 cal/mole, respectively. The polishing degrees and water soaking time of rice did not affect the activation energy of cooking; however, the lower polishing degrees and shorter soaking increased the cooking time The experimental results suggested that the cooking process of rice comprises two mechanisms: At temperatures below $100^{\circ}C$ the cooking rate is controlled by the reaction rate of rice constituents with water, and at temperatures above $100^{\circ}C$, it is controlled by the rate of diffusion of water through the cooked portion (or layer) toward the interface of uncooked core in which the reaction is occurring.

  • PDF