• 제목/요약/키워드: Energy Difference Estimator

검색결과 5건 처리시간 0.017초

주파수 추적을 위한 직병렬 구조의 새로운 주종 필터뱅크 (A New Master-Slave Filter-Bank with Series-Parallel Structure for Tracking Center Frequency)

  • 윤형식;임재환;이석필;박상희
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.339-345
    • /
    • 1994
  • A new filter-bank is proposed in order to track center frequency of narrow band signal. The two banks are connected in series-parallel. The master filter bank which is made of traditional filter bank detects the center frequency roughly. And the performance for tracking center frequency is greatly improved by the slave filter bank which is based on energy-difference estimator. Computer simulations show that it achieves a good tracking accuracy.

  • PDF

정현파 추적 성능을 개선한 필터뱅크형 적응 노치 필터 (Filter Bank Based Adaptive Notch Filter with an Improved Performance for Tracking Center Frequency)

  • 윤형식;임재환;최재승;박상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.456-459
    • /
    • 1993
  • A new filter-bank is proposed in order to track center frequency of narrow bard signal. The filter-bark proposed here has a laster and a slave filter bark. The two barks are connected in series-parallel. The master filter bank which is made of traditional filter bank detects the center frequency roughly. And the performance for tracking center frequency is greatly improved by the slave filter bank which is based or energy-difference estimator. Computer simulations show that it achieves a good tracking accuracy.

  • PDF

A posteriori error estimation via mode-based finite element formulation using deep learning

  • Jung, Jaeho;Park, Seunghwan;Lee, Chaemin
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.273-282
    • /
    • 2022
  • In this paper, we propose a new concept for error estimation in finite element solutions, which we call mode-based error estimation. The proposed error estimation predicts a posteriori error calculated by the difference between the direct finite element (FE) approximation and the recovered FE approximation. The mode-based FE formulation for the recently developed self-updated finite element is employed to calculate the recovered solution. The formulation is constructed by searching for optimal bending directions for each element, and deep learning is adopted to help find the optimal bending directions. Through various numerical examples using four-node quadrilateral finite elements, we demonstrate the improved predictive capability of the proposed error estimator compared with other competitive methods.

무요소 방법에서의 적응적 해석을 위한 오차의 평가 (Adaptive Analysis and Error Estimation in Meshless Method)

  • 정흥진
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.261-274
    • /
    • 1998
  • 본 연구에서는 무요소방법에 적응적 해석기법을 적용하기 위한 부분 및 전체오차의 평가기법을 제안하였다. 본 연구에서 제안한 오차의 평가방법은 무요소방법에서 계산된 응력이 오차가 큰 영역에서 진동한다는 특성을 이용한 것으로 해석결과 얻어진 응력을 낮은 차수의 형상함수로 투사하는 후처리를 함으로써 가상진동모우드를 제거하고 이때 얻어진 투영응력과 원래의 응력을 비교하여 부분오차 및 전체오차를 구할 수 있다. 1차원 및 2차원 예제해석을 통하여 투영응력을 구할 때 가능한 한 작은 영향영역을 사용하는 것이 바람직하다는 것을 보였으며 이는 영향영역의 크기를 과도하게 설정할 경우 투영응력을 과대 평가할 수 있기 때문이다. 본 연구에서 제안한 오차의 평가기법은 다른 무요소 방법에 적용될 수 있다.

  • PDF

비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발 (Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues)

  • 최우철;전태훈;송정호;김광표
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.