• Title/Summary/Keyword: Energy Detector

Search Result 890, Processing Time 0.034 seconds

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul;Kim, Hee-Joung;Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.776-780
    • /
    • 2017
  • To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

Precise Measurement of Beam Energy and Range with TOF and Counter Telescope System

  • Nanbu, Shuya;Kanai, Tatsuaki;Kohno, Toshiyuki;Ohno, Yumiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.225-227
    • /
    • 2002
  • In order to improve the accuracy of charged-particle radiation therapy, the beam energy was measured precisely using a TOF-system, and the range using a counter telescope system. A Si detector and a Ge detector were used to estimate the range straggling as a $\Delta$E and an E detector, respectively, because they have good energy resolution and the output pulse heights don't depend on the atomic number of detected particles. The results were compared with the theoretical values by a calculation code.

  • PDF

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

A detector system for searching lost γ-ray source

  • Khan, Waseem;He, Chaohui;Cao, Yu;Khan, Rashid;Yang, Weitao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1524-1531
    • /
    • 2020
  • The aim of this work is to develop a Geiger-Muller (GM) detector system for robot to look for a radioactive source in case of a nuclear emergency or in a high radiation environment. In order to find a radiation source easily, a detector system, including 3 detectors, was designed to search γ-ray radiation sources autonomously. First, based on GEANT4 simulation, radiation dose rates in 3 Geiger-Muller (GM) counters were simulated at different source-detector distances, distances between detectors and angles. Various sensitivity analyses were performed experimentally to verify the simulated designed detector system. A mono-energetic 137Cs γ-ray source with energy 662 keV and activity of 1.11 GBq was used for the observation. The simulated results were compared with the experimental dose rate values and good agreements were obtained for various cases. Only based on the dose rates in three detectors, the radiation source with a specific source activity and angle was localized in the different location. A method was adopted with the measured dose rates and differences of distances to find the actual location of the lost γ-ray source. The corresponding angles of deviation and detection limits were calculated to determine the sensitivity and abilities of our designed detector system. The proposed system can be used to locate radiation sources in low and high radiation environments.

A Study on the Comparison of HPGe Detector Response Data for Low Energy Photons Using MCNP, EGS, and ITS Codes (MCNP, EGS, ITS코드를 이용한 고순도 게르마늄 검출기의 저에너지 광자에 대한 반응 비교연구)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Jong-Oh;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.125-129
    • /
    • 1996
  • The energy response of HPGe detector for low energy Photons was determined by using three Monte Carlo codes. MCNP4A. EGS4, and CYLTRAN in ITS3. In this study. bare HPGe detector$(100 mm^2{\times}10mm)$ was used and a pencil beam was incident perpendicularly on the center of the detector surface. The photopeak efficiency, $K_{\alpha}$ and $K_{\beta}$ escape fractions were calculated as a function of incident X-ray energies ranging from 12 to 60 keV in 2-keV increments. Since the Compton. elastic. ana penetration fraction were negligible in this energy range. they were ignored in the calculation. Although MCNP. EGS, and CYLTRAN codes calculated slightly different energy response of HPGe detector for low energy Photons, it appears that the three Monte Carlo codes can Predict the low energy Photon scattering Processes accurately. The MCNP results, which are generally known as to be less accurate at low energy ranges than the EGS and ITS results. are comparable to the results of EGS and ITS and are applicable to the calculation of the low energy response data of a detector.

  • PDF

Determination of Boron Isotopic Ratio by Using an Alpha Track Technique

  • Park, Yong-Joon;Pyo, Hyung-Yeal;Song, Kyu-Seok;Song, Byoung-Chul;Jee, Kwang-Yong;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1609-1612
    • /
    • 2006
  • The determination of the boron isotopic ratio in solutions was achieved by means of a solid state track detector by using an alpha track. The neutron flux was optimized by using a Cd-foil to find the optimum conditions for counting the number of alpha tracks on the selected solid detector caused by the (n, $\alpha$) nuclear reaction of boron. The home-made multi-dot detector plate was utilized in this study to increase the reproducibility of the measurement by uniformly drying the boron solution within the marked circle area on the detector plate. The experimental results of this study verified that the $^{11}B/^{10}B $ isotopic ratio can be measured by observing the number of alpha tracks for different concentrated standard solutions with various isotopic compositions. This technique was applied to the determination of $^{10}B$ enrichment factor in a biological sample for a boron neutron capture therapy.

The Characteristics Study on Detector for In-pipe Radioactive Contamination Counting

  • Seo B. K.;Kim G. H.;Jung Y. H.;Woo Z. H.;Oh W. Z.;Lee K. W.;Han M. J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.269-279
    • /
    • 2005
  • In this study, detectors characteristics for simultaneous counting of alpha and beta ray in a pipe were estimated. The detector were composed of thin ZnS(Ag) scintillator and plastic detector. The scintillator for counting alpha particles has been applied a polymer composite sheet, having a double layer structure of an inorganic scintillator ZnS(Ag) layer adhered onto a polymer sub-layer. The other for counting beta particles used a commercially available plastic scintillator. It was confirmed that the detectors were suitable for counting the in-pipe contamination.

  • PDF

Wireless Energy-Harvesting Cognitive Radio with Feature Detectors

  • Gao, Yan;Chen, Yunfei;Xie, Zhibin;Hu, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4625-4641
    • /
    • 2016
  • The performances of two commonly used feature detectors for wireless energy-harvesting cognitive radio systems are compared with the energy detector under energy causality and collision constraints. The optimal sensing duration is obtained by analyzing the effect of the detection threshold on the average throughput and collision probability. Numerical examples show that the covariance detector has the optimal sensing duration depending on an appropriate choice of the detection threshold, but no optimal sensing duration exists for the ratio of average energy to minimum eigenvalue detector.

Arc Detection Performance and Processing Speed Improvement of Discrete Wavelet Transform Algorithm for Photovoltaic Series Arc Fault Detector (태양광 직렬 아크 검출기의 검출 성능 및 DWT 알고리즘 연산 속도 개선)

  • Cho, Chan-Gi;Ahn, Jae-Beom;Lee, Jin-Han;Lee, Ki-Duk;Lee, Jin;Ryoo, Hong-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2021
  • This study proposes a DC series arc fault detector using a frequency analysis method called the discrete wavelet transform (DWT), in which the processing speed of the DWT algorithm is improved effectively. The processing time can be shortened because of the time characteristic of the DWT result. The performance of the developed DC series arc fault detector for a large photovoltaic system is verified with various DC series arc generation conditions. Successful DC series arc detection and improved calculation time were both demonstrated through the measured actual arc experimental result.

Phoswich Detector for Simultaneous Measuring Alpha/beta Particles (알파/베타선 동시측정용 phoswich 검출기)

  • Kim, Gye-Hong;Park, Chan-Hee;Lee, Kune-Woo;Jung, Chong-Hun;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for alpha/beta-ray simultaneous counting was developed for monitoring radiological contamination inside pipes. The detection performance was estimated using the PSD (pulse shape discrimination) method as a function of distance between the scintillator and radioactive source. The attenuation of particles traveling through a thin film for preventing the detector from being contaminated was experimentally estimated. It is concluded from our investigation that the phoswich detector developed can provide a sufficient alpha/beta-ray discrimination. The application of a thin film for preventing the detector from being contaminated was proven to be feasible.

  • PDF