• Title/Summary/Keyword: Energy Converting

Search Result 278, Processing Time 0.028 seconds

Evaluation of the creep damage of the Type 316LN stainless steel by the ultrasonic wave velocity (초음파 속도를 이용한 Type 316LN 스테인리스 강의 크리프 손상 평가)

  • Yi Won;Noh Kyung-Yong;Yun Song-Nam;Kim Woo-Gon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.818-823
    • /
    • 2005
  • Creep damage is one of the mosl important characteristics for the stability of high temperature structures such as huge energy converting facilities. Creep failure of Type 316LN stainless steel is highly correlated to generation and growth of the voids. In this paper, in order to investigate the correlation of creep rupture time and ultrasonic parameters (group velocity, angular velocity), creep-damaged Type 316LN specimens and measurements for the ultrasonic parameters were made. However, bi-directional measurements were applied along the load direction and the perpendicular direction to the load line by means of the contact type probe of which the central frequencies are 10MHz, 15MHz and 20MHz. Analyzing the angular velocities of the ultrasonic signals obtained from the load direction, it was confirmed that the angular velocities were declined as the creep time passed when 15MHz and 20MHz probes were used. Also, the group velocities were declined for all three frequencies as the creep time increased. Thus, positive feasibility for the creep damage evaluation by means of the angular and group velocities was confirmed. Moreover, result of analysis for the ultrasonic signal which was obtained from the perpendicular direction upon the angular and group velocities indicated little variation for both of the angular and group velocities. Therefore, the creep damage is likely to represent anisotropic itself.

  • PDF

Step-Up Asymmetrical Nine Phase Delta-Connected Transformer for HVDC Transmission

  • Ammar, Arafet Ben;Ammar, Faouzi Ben
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1920-1929
    • /
    • 2018
  • In order to provide a source for nine phases suitable for 18-pulse ac to dc power, this paper proposes a new structure for a step-up asymmetrical delta-connected transformer for converting three-phase ac power to nine-phase ac power. The design allows for symmetry between the nine output voltages to improve the power quality of the supply current and to minimize the THD. The results show that this new structure proves the equality between the output voltages with $40^{\circ}-{\alpha}$ and $40^{\circ}+{\alpha}$ phase shifting and produces symmetrical output currents. This result in the elimination of harmonics in the network current and provides a simulated THD that is equal to 5.12 %. An experimental prototype of the step-up asymmetrical delta-autotransformer is developed in the laboratory and the obtained results give a network current with a THD that is equal to 5.35%. Furthermore, a finite element analysis with a 3D magnetic field model is made based on the dimensions of the 4kVA, 400 V laboratory prototype three-phase with three-limb delta-autotransformer with a six-stacked-core in each limb. The magnetic distribution flux, field intensity and magnetic energy are carried out under open-circuit operation or load-loss.

Methodology of the Fuel Conversion Project and Analysis of the Offset System of the Greenhouse Gas Emission Trading System (연료 전환 사업의 방법론과 온실가스 배출권거래제 상쇄제도 분석)

  • Kim, Eok yong;Shin, Min chang;Park, Jeong hoon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.478-485
    • /
    • 2022
  • The certification performance issued through an external business is sold to companies subject to the emission trading system allocation, and the company subject to the allocation can secure the quota by converting the purchased external business certification performance into offset credits. In this methodology, when fossil fuels that used existing oil boilers (by oil type) were replaced with boilers using propane gas with a relatively low carbon content, the amount of carbon dioxide emission reduction by oil type was recognized. As an initial analysis to make up for the insufficient quota of large corporations, the amount of carbon reduction emissions and emission rights trading was calculated.

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Three-Dimensional Modeling and Simulation of a Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택에 대한 3차원 모델링 및 모사)

  • An Hyun-shik;Kim Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.40-48
    • /
    • 2000
  • A fuel cell is an electrochemical device continuously converting the chemical energy in a fuel and an oxidant to electrical energy by going through an essentially invariant electrode-electrolyte system. Phosphoric acid fuel cell employs concentrated phosphoric acid as an electrolyte. The cell stack in the fuel cell, which is the most important part of the fuel cell system, is made up of anode where oxidation of the fuel occurs cathode where reduction of the oxidant occurs; and electrolyte, to separate the anode and cathode and to conduct the ions between them. Fuel cell performance is associated with many parameters such as operating and design parameters associated with the system configuration. In order to understand the design concepts of the phosphoric fuel cell and predict it's performance, we have here introduced the simulation of the fuel-cell stack which is core component and modeled in a 3-dimensional grid space. The concentration of reactants and products, and the temperature distributions according to the flow rates of an oxidant are computed by the help of a computational fluid dynamic code, i.e., FLUENT.

  • PDF

Vital Area Identification Rule Development and Its Application for the Physical Protection of Nuclear Power Plants (원자력발전소의 물리적방호를 위한 핵심구역파악 규칙 개발 및 적용)

  • Jung, Woo Sik;Hwang, Mee-Jeong;Kang, Minho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.160-171
    • /
    • 2017
  • US national research laboratories developed the first Vital Area Identification (VAI) method for the physical protection of nuclear power plants that is based on Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) techniques in 1970s. Then, Korea Atomic Energy Research Institute proposed advanced VAI method that takes advantage of fire and flooding Probabilistic Safety Assessment (PSA) results. In this study, in order to minimize the burden and difficulty of VAI, (1) a set of streamlined VAI rules were developed, and (2) this set of rules was applied to PSA fault tree and event tree at the initial stage of VAI process. This new rule-based VAI method is explained, and its efficiency and correctness are demonstrated throughout this paper. This new rule-based VAI method drastically reduces problem size by (1) performing PSA event tree simplification by applying VAI rules to the PSA event tree, (2) calculating preliminary prevention sets with event tree headings, (3) converting the shortest preliminary prevention set into a sabotage fault tree, and (4) performing usual VAI procedure. Since this new rule-based VAI method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. In spite of an extremely reduced sabotage fault tree, this method generates identical vital areas to those by traditional VAI method. It is strongly recommended that this new rule-based VAI method be applied to the physical protection of nuclear power plants and other complex safety-critical systems such as chemical and military systems.

A methodology for design of metallic dampers in retrofit of earthquake-damaged frame

  • Zhang, Chao;Zhou, Yun;Weng, Da G.;Lu, De H.;Wu, Cong X.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.569-588
    • /
    • 2015
  • A comprehensive methodology is proposed for design of metallic dampers in seismic retrofit of earthquake-damaged frame structures. It is assumed that the metallic dampers remain elastic and only provide stiffness during frequent earthquake (i.e., earthquake with a 63% probability of exceedance in 50-year service period), while in precautionary earthquake (i.e., earthquake with a 10% probability of exceedance in 50-year service period), the metallic dampers yield before the main frame and dissipate most of the seismic energy to either prevent or minimize structural damages. Therefore by converting multi-story frame to an equivalent single-degree-of-freedom system, the added stiffness provided by metallic dampers is designed to control elastic story drifts within code-based demand under frequent earthquake, and the added damping with the combination of added stiffness influences is obtained to control structural stress within performance-based target under precautionary earthquake. With the equivalent added damping ratio, the expected damping forces provided by metallic dampers can be calculated to carry out the configuration and design of metallic dampers along with supporting braces. Based on a detailed example for retrofit of an earthquake-damaged reinforced concrete frame by using metallic dampers, the proposed design procedure is demonstrated to be simple and practical, which can not only meet current China's design codes but also be used in retrofit design of earthquake-damaged frame with metallic damper for reaching desirable performance objective.

Comparison of efficiencies of converting urea solution to ammonia depending on active catalyst metals on TiO2 (타이타니아 담지 활성촉매에 따른 요소 수용액의 암모니아 전환 효율 비교)

  • Lee, Myung Sig;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.163-172
    • /
    • 2018
  • In this study, selective catalytic reductions (SCR) of NO commercial catalysts were used to investigate the effect of ammonia gasification from urea solution. The effects of catalytic chemical composition on the reaction temperature and space velocity were studied. $V_2O_5/TiO_2$ catalysts, which are widely used as SCR catalysts for removal of nitrogen oxides, have better ammonia formation compare to $TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The $TiO_2$ catalyst not supporting the active metal was not affected by the space velocity as compared with the catalyst supporting $V_2O_5$ or $WO_3-V_2O_5$. The active metal supported catalysts decreased in the ammonia formation as the space velocity increased.

The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts (비만에서 장내 미생물 균총의 역할과 발효 한양의 활용)

  • Park, Jung-Hyun;Kim, Ho-Jun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF