• Title/Summary/Keyword: Energy Control

Search Result 9,852, Processing Time 0.041 seconds

The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells

  • Fan, Hui-Jie;Tan, Zhang-Bin;Wu, Yu-Ting;Feng, Xiao-Reng;Bi, Yi-Ming;Xie, Ling-Peng;Zhang, Wen-Tong;Ming, Zhi;Liu, Bin;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.258-266
    • /
    • 2020
  • Background: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process in ischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) to alleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however, the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in this study. Methods: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. The antioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activity were examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 to GR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. Results: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cell apoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energy between GRb1 and GR was positive (-6.426 kcal/mol), and the binding was stable. GRb1 significantl reduced reactive oxygen species production and increased GSH level and GR activity without altering GR protein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activity in vitro, with a half-maximal effective concentration of ≈2.317 μM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1's apoptotic and antioxidative effects of GRb1 in H9C2 cells. Conclusion: GRb1 is a potential natural GR agonist that protects against oxidative stress-induced apoptosis of H9C2 cells.

Inhibitory Effect of Prunus mune Extracts on Physiological Function of Food Spoilage microorganisms (매실추출물이 변패미생물의 생리기능에 미치는 영향)

  • Ha, Myung-Hee;Park, Woo-Po;Lee, Seung-Cheol;Heo, Ho-Jin;Oh, Byung-Tae;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.323-327
    • /
    • 2007
  • Moderate consumption of maesil(Prunus mune) was associated with pharmaceutical and physiological effects on human health. The object of this study was to determine the inhibitory effects of Prunus mune extracts(PME) on food spoilage microorganisms. PME was found to have an antibacterial effect on Colletotrichum fragariae. The hydrophilic fractions of PME showed more effective inhibition than did the hydrophobic fractions. In addition, the hydrophilic fractions of PME seemed to inhibit(12-40%) metabolic enzymes related to energy production, including glucose-6-phosphate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and hexokinase. Our data suggest that hydrophilic components of PME might control food spoilage microorganisms because of suppression of membrane enzymatic function.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Cloning of Cytochrome P450 Gene involved in the Pathway of Capsidiol Biosynthesis in Red Pepper Cells (고추세포에서 Capsidiol 생합성을 유도하는 Cytochrome P450 유전자의 탐색)

  • Kwon, Soon-Tae;Kim, Jae-Sung;Jung, Do-Cheul;Jeong, Jeong-Hag;Hwang, Jae-Moon;Oh, Sei-Myoung
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.879-888
    • /
    • 2003
  • In order to measure the enzyme activity of 5-epi-aristolochene hydroxylase, one of cytochrome P450 (P450) enzymes in eicitor-treated pepper cell, we used in vivo assay method and demonstrated a dramatic suppression of the activity by P450-inhibitors, ancymidol and ketocornazole. Using RT-PCR method with degenerate primer of the well conserved domains found within most P450-enzymes, and using cDNA library screening method, one distinct cDNA, being designated P450Hy01, was successfully isolated from elicitor-treated pepper cells. P450Hy01 mRNA was all induced in elicitor-treated cells whereas never induced in control cells. Moreover, levels of P450Hy01 expression were highly correlated with the levels of extracellular capsidiol production by different elicitors in cell cultures. P450Hy01 transcript was also induced by several other elicitors such as, cellulase, arachidonic acid, jasmonic acid, yeast extract as well as UV stress. P450Hy01 sequence contained high probability amino acid matches to known Plant P450 genes and ORF with a conserved FxxGxRxCxG heme-binding domain. P450Hy01 cDNA showed 98% of homology in sequence of nucleotide as well as amino acid to 5-epi-aristolochene-1, 3-hydroxylase (5EAl, 3H) which has been isolated in tobacco cells, suggesting that P450Hy01 is prominent candidate gene for P450-enzyme encoding 5EAl, 3H in pepper cell.

Enhanced Extraction of Bioactive Compounds from Bee Pollen by Wet-grinding Technology (벌 화분에서 습식 나노화 공정에 의한 유효성분의 추출)

  • Choi, Yun-Sik;Suh, Hwa-Jin;Chung, Il Kyung
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.651-656
    • /
    • 2016
  • Bee pollen is produced by honeybees and is considered one of the most balanced and nourishing nutritional supplements available. Historically, bee pollen has been prescribed for its healing properties and consumed for its high-energy supply. Recent research has provided evidence that bee pollen has diverse biological activities, such as anti-oxidant, anti-inflammatory, anti-bacterial, and even anti-cancer effects. However, the outer membrane of the pollen grain, exine, is highly resistant to most acidic solutions, high pressure, and even digestive enzymes, and the resulting low bioavailability limits its nutritional and clinical applications. This study applied a wet-grinding method to destroy the exine effectively, and it then examined the pollen's enhanced biological activity. First, microscopic observations provided strong evidence that wet grinding destroyed the exine time-dependently. In addition, the content of polyphenols, well-known ingredients of bee pollen and used as internal standards for the quality control of commercial pollen preparations, increased up to 11-fold with wet grinding. Further, the anti-oxidant activity demonstrated on the ABTS anti-oxidant assay, as well as the DPPH radical scavenging assay, was also dramatically increased. Together, the results presented here support a new technology by which bee pollen can be used as a resource for medical, nutritional, and cosmetic applications.

The Suppression of Inflammatory Cytokines Induced by Propionibacterium acnes Using Bacteriocin Isolated from Lactobacillus plantarum K-1 BR (Lactobacillus plantarum K-1 BR 유래 박테리오신의 여드름균에 의한 염증성 사이토카인 억제 효과)

  • Jeong, Jin Woong;Jung, Yong Hyun;Lee, Jong Sung;Yoon, Seung Won;Lee, Seung Yeon;Lee, Hong Chan;Yoon, Young Geol
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.970-975
    • /
    • 2016
  • Acne vulgaris is a common chronic skin disorder that affects millions of people. The pathogenesis of acne has been known to be closely associated with the bacterium Propionibacterium acnes. Here we investigated the anti-acne activity of Lactobacillus plantarum K-1 BR by observing the expressions of proinflammatory cytokines, TNF-α, IFN-γ and IL-8, of human keratinocytes. When we applied heat-killed P. acnes to HaCaT cells, the inflammatory cytokines were induced by two- to four-fold compared to the normal control. When the bacteriocin, purified from L. plantarum K-1 BR, was pretreated to the HaCaT cells, the expression levels of TNF-α and IFN-γ stimulated by P. acnes significantly decreased to 25% and 30% of the induced levels, respectively. The IL-8 levels also significantly decreased with the concentration dependent manner of the bacteriocin. These results suggest that the bacteriocin from L. plantarum K-1 BR could reduce the expression levels of inflammatory cytokines and thus may relieve inflammations caused by acne.

Effects of Glucose and Acetic Acid on the Growth of Recombinant E.coli and the Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody (유전자 재조합 대장균의 세포성장과 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체 생산에 대한 포도당과 초산의 영향)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.482-488
    • /
    • 2000
  • The Fab fraction of PDC-E2 specific human monoclonal antibody was produced using recombinant E. coli, and the effects of glucose and acetate were investigated to develop an optimal strategy for recombinant human antibody production. Higher glucose concentration in the culture media resulted inn higher cell growth and glucose consumption rate, which in turn resulted in an increased acetate production rate. When glucose was depleted, cells began to consume acetate as an energy source, and this consumption rate depended on the glucose concentration. When the residual glucose concentration was high, the accumulation of acetate was accelerated due to an increase in the acetate production rate and a decrease in the acetate consumption rate. Futhermore, it was found that a high accumulation of acetate, accompanied by a high glucose concentration, inhibited human antibody formation; the critical acetate concentration was $0.6g/\ell$. During production, a high glucose concentration enhanced cell growth, but inhibited antibody formation due to catabolic repression. Therefore, it is important to keep the concentration of both glucose and acetate as low as possible to increase antibody production after induction. Accordingly, it is important to accurately control the concentration of glucose and acetate in the culture media to obtain high cell densities and high productivity levels of recombinant human antibody.

  • PDF

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant (화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구)

  • Song, Youngho;Kim, Ok;Park, Sanghyun;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.