• Title/Summary/Keyword: Energy Consumption Units

Search Result 89, Processing Time 0.024 seconds

A layer-wise frequency scaling for a neural processing unit

  • Chung, Jaehoon;Kim, HyunMi;Shin, Kyoungseon;Lyuh, Chun-Gi;Cho, Yong Cheol Peter;Han, Jinho;Kwon, Youngsu;Gong, Young-Ho;Chung, Sung Woo
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.849-858
    • /
    • 2022
  • Dynamic voltage frequency scaling (DVFS) has been widely adopted for runtime power management of various processing units. In the case of neural processing units (NPUs), power management of neural network applications is required to adjust the frequency and voltage every layer to consider the power behavior and performance of each layer. Unfortunately, DVFS is inappropriate for layer-wise run-time power management of NPUs due to the long latency of voltage scaling compared with each layer execution time. Because the frequency scaling is fast enough to keep up with each layer, we propose a layerwise dynamic frequency scaling (DFS) technique for an NPU. Our proposed DFS exploits the highest frequency under the power limit of an NPU for each layer. To determine the highest allowable frequency, we build a power model to predict the power consumption of an NPU based on a real measurement on the fabricated NPU. Our evaluation results show that our proposed DFS improves frame per second (FPS) by 33% and saves energy by 14% on average, compared with DVFS.

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1019-1027
    • /
    • 2009
  • A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

A Feasibility Study on the Wind Power Plant for Common Residential Buildings in Youngdo Island, Busan (부산 영도구 공동주택에 대한 풍력발전 도입가능성)

  • Hwang, Kwang-Il;Kim, Jee-Hun;Shin, Hyoun-Ho;Lee, Su-Ho;Han, Je-Deok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • A wind power plant is one of the competitive and effective energy among the regulated 13 renewable energies, especially for the seashore and island. This study is focused on the possibility of wind power plant as a on-site electric power supply system for the common residential building in Youngdo, Busan. The following show the results of this study. 26 apartments' monthly electric power consumptions are surveyed and monthly variations are stable comparing to the metropolitan. With the wind speed measured in Youngdo island and wind power plant efficiency data, the simulation is conducted and the result shows that 35 wind power units are satisfied with full electric power load for all the common residential buildings in Youngdo island.

  • PDF

A Study on the Introduction of Life Cycle Assessment (LCA) for Rolling Stocks (철도차량에 대한 전과정평가 도입을 위한 방안 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Park, Sung-Hwan;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.589-593
    • /
    • 2007
  • Due to sustainable development, international environmental regulations have been reinforced continuously. Especially, Kyoto protocol related to energy consumption affects to national production system seriously. Even if railroad is the most environmental- friendly transportation, it is necessary to improve its environment. Life cycle assessment (LCA) is a representative tool to evaluate the environment impacts of a product. In the EU's railroad companies, the recycling efficiency and the waste emissions of rolling stocks have improved considering their environment impacts with LCA from a design step. Also, the LCA system of Korean electric motor units has been developed to build an environmentally sound railroad as one of national transportation core technology R&D projects. Therefore, the introduction of LCA will be required to decrease environmental impacts released from rolling stocks in the future.

  • PDF

Memory-Efficient Belief Propagation for Stereo Matching on GPU (GPU 에서의 고속 스테레오 정합을 위한 메모리 효율적인 Belief Propagation)

  • Choi, Young-Kyu;Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • Belief propagation (BP) is a commonly used global energy minimization algorithm for solving stereo matching problem in 3D reconstruction. However, it requires large memory bandwidth and data size. In this paper, we propose a novel memory-efficient algorithm of BP in stereo matching on the Graphics Processing Units (GPU). The data size and transfer bandwidth are significantly reduced by storing only a part of the whole message. In order to maintain the accuracy of the matching result, the local messages are reconstructed using shared memory available in GPU. Experimental result shows that there is almost an order of reduction in the global memory consumption, and 21 to 46% saving in memory bandwidth when compared to the conventional algorithm. The implementation result on a recent GPU shows that we can obtain 22.8 times speedup in execution time compared to the execution on CPU.

  • PDF

Effect of Exogenous Xylanase Supplementation on the Performance, Net Energy and Gut Microflora of Broiler Chickens Fed Wheat-based Diets

  • Nian, F.;Guo, Y.M.;Ru, Y.J.;Li, F.D.;Peron, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.400-406
    • /
    • 2011
  • An experiment was carried out to assess the effects of xylanase supplementation on the performance, net energy and gut microflora of broilers fed a wheat-based diet. Day-old male broiler chicks were allocated to two dietary treatments. Each treatment was composed of six replicate cages of seven broilers per cage. The diets were wheat-based and offered as mash. The treatments included i) basal diet deficient in metabolizable energy; and ii) basal diet supplemented with a commercial xylanase added at 4,000 U/kg feed. Bird performance, nutrient utilization and gut microbial populations were measured. Heat production and net energy were determined using an auto-control, open circuit respiration calorimetry apparatus. Results showed that exogenous xylanase supplementation improved feed conversion efficiency (p<0.05) and increased diet AME (+4.2%; p<0.05), as well as heat production (HP), net energy for production (NEp), production of $CO_2$, and consumption of $O_2$. The respiratory quotient (RQ) was also increased (p<0.01) by the addition of xylanase. NEp value was increased by 26.1% while daily heat production per kg metabolizable body weight was decreased by 26.2% when the xylanase was added. Xylanase supplementation numerically increased the ileal digestibility of protein and energy by 3 and 6 percentage units respectively (p>0.05). The ileal digestibility of hemicellulose was significantly improved by xylanase addition (p<0.05).

A Study on Effective Green Technology in Relation to the Energy Performance Improvement of Existing Architectural Structures (기존건축물 에너지성능 개선시 효과적인 녹색기술 연구)

  • Kim, Dae-Won;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • The emission quota of 26.9% was allocated to the architectural sector according to the greenhouse gas(GHG) emission reduction goal of the government. It has become inevitable to change the architectural structures in a low-energy consumption and sustainable manner for new and existing house. The introduction of various legal systems and deregulation have been attempted to promote the low carbon emission and sustainable energy conversion. Although overall emission reduction goal has been set for 6.7 million units of existing houses, there has been a lack of standards and directions for the emission reduction measures. This study was intended to present the most economic and effective green technology improvement measures based on the investigation into the current conditions through direct visit to the selected architectural structures and the repeated simulation of relevant technical elements.

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs

  • Do, Thuan Cong;Kim, Gwang Bok;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.1-9
    • /
    • 2018
  • Modern graphics processing units (GPUs) have become one of the most attractive platforms in exploiting high thread level parallelism with the support of new programming tools such as CUDA and OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns; however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D does not always positively affect the applications in terms of performance and energy efficiency for the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our proposed technique exploits the characteristics of the currently-executed applications to predict the performance impact of the L1D on the GPU and then decides whether to continuously use the cache for the application or not. Our experimental results show that the proposed technique improves the GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.

The Integration of Adaptive Elements into High-Rise Structures

  • Weidner, Stefanie;Steffen, Simon;Sobek, Werner
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2019
  • Whilst most research focuses on the reduction of operative energy use in buildings, the aspect of which (and how many) materials are used is often neglected and poorly explored. However, considering the continuous growth of the global population and the limited availability of resources, it is clear that focusing on operative energy alone is too short-sighted. The tasks lying ahead for architects and engineers cannot be accomplished with conventional methods of construction. With a share of 50-60% of global resource consumption, the building industry has a decisive impact on our environment. If business as usual continues, resources will be significantly depleted in a matter of decades. Therefore, researchers of the University of Stuttgart are investigating the concept of adaptivity as a promising method for saving resources in the built environment. The term adaptivity in the context of building structures was first introduced by Werner Sobek. It describes a method where sensors, actuators and control units are implemented in systems or facades in order to oppose physical impacts in an ideal way. The applicability of this method will be verified on an experimental high-rise building at the University campus in Stuttgart. Thus, this paper describes this innovative research project and depicts the concept of adaptivity in high-rise structures. Furthermore, it gives an overview of potential actuation concepts and the interdisciplinary challenges behind them.

Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House (저에너지주택의 지열히트펌프시스템 냉·난방 성능분석)

  • Baek, Namchoon;Kim, Sungbum;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.