• Title/Summary/Keyword: Energy Consumption Minimization

Search Result 68, Processing Time 0.026 seconds

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements (수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조)

  • Nguyen, Thi Tham;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1328-1336
    • /
    • 2012
  • Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

Optimization Analysis for Embodied Energy and CO2 Emission in Reinforced Concrete Column Using Sustainable Design Method (지속가능 설계법을 이용한 철근 콘크리트 기둥의 내재에너지 및 이산화탄소 배출 최적화 해석)

  • Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.265-274
    • /
    • 2017
  • This study presents a sustainable design method to optimize the embodied energy and $CO_2$ emission complying with the design code for reinforced concrete column. The sustainable design method effectively achieves the minimization of the environmental load and energy consumption whereas the conventional design method has been mostly focused on the cost saving. Failure of reinforced concrete column exhibits compressive or tensile failure mode against an external force such as flexure and compression; thus, optimization analyses are conducted for both failure modes. For the given sections and reinforcement ratios, the optimized sections are determined by optimizing cost, embodied energy, and $CO_2$ emission and various aspects of the sections are thoroughly investigated. The optimization analysis results show that 25% embodied energy and 55% $CO_2$ emission can be approximately reduced by 10% increase in cost. In particular, the embodied energy and $CO_2$ emission were more effectively reduced in the tensile failure mode rather than in the compressive failure mode. Consequently, it was proved that the sustainable design method effectively implements the concept of sustainable development in the design of reinforced concrete structure by optimizing embodied energy consumption and $CO_2$ emission.

RPSMDSM: Residential Power Scheduling and Modelling for Demand Side Management

  • Ahmed, Sheeraz;Raza, Ali;Shafique, Shahryar;Ahmad, Mukhtar;Khan, Muhammad Yousaf Ali;Nawaz, Asif;Tariq, Rohi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2398-2421
    • /
    • 2020
  • In third world countries like Pakistan, the production of electricity has been quickly reduced in past years due to rely on the fossil fuel. According to a survey conducted in 2017, the overall electrical energy capacity was 22,797MW, since the electrical grids have gone too old, therefore the efficiency of grids, goes down to nearly 17000MW. Significant addition of fossil fuel, hydro and nuclear is 64.2%, 29% and 5.8% respectively in the total electricity production in Pakistan. In 2018, the demand crossed 20,223MW, compared to peak generation of 15,400 to 15,700MW as by the Ministry of Water and Power. Country faces a deficit of almost 4000MW to 5000MW for the duration of 2019 hot summer term. Focus on one aspect considering Demand Side Management (DSM) cannot oversea the reduction of gap between power demand and customer supply, which eventually leads to the issue of load shedding. Hence, a scheduling scheme is proposed in this paper called RPSMDSM that is based on selection of those appliances that need to be only Turned-On, on priority during peak hours consuming minimum energy. The Home Energy Management (HEM) system is integrated between consumer and utility and bidirectional flow is presented in the scheme. During peak hours of electricity, the RPSMDSM is capable to persuade less power consumption and accomplish productivity in load management. Simulations show that RPSMDSM scheme helps in scheduling the electricity loads from peak price to off-peak price hours. As a result, minimization in electricity cost as well as (Peak-to-Average Ratio) PAR are accomplished with sensible waiting time.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 3 : Optimal Driving Control Algorithm (버스용 병렬형 하이브리드 동력전달계의 개발(III) 제 3 편;최적 주행 제어 알고리즘)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.182-197
    • /
    • 1999
  • Described in this paper is an optimal driving control algorithm which focused on the improvement of fuel economy and the minimization of pollutant emissions in the parallel type hybrid drivertrain system for transit bus. For the energy balance among components such as engine, induction machine and buttery, the algorithm for power split ration determine is proposed. When it is implemented in the hybrid electric control unit(HECU) , using the sub-optimal method and the approximate technique , it is possible to save the memory , to shorten the calculation time, and to achieve the efficient driving actually. A Shift strategy for automated manual transmission is the other side of the driving control algorithm. It enables to select the optimal gear by using several shift maps which were predefined from the proposed method in this paper, As a results of driving simulation, it is proved that these algorithms make the hybrid drivetrain system to reduce fuel consumption and emissions considerably and to have the ability to the efficient use of battery.

  • PDF

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

The Performance and Evaluation for Recycling of Waste Glass

  • Chang, Tein-Chin;Huang, Jian-Er;Yen, Jia-Huei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.80-83
    • /
    • 2001
  • According to the EPA in Taiwan report, 9.05 million metric tons of solid wastes were generated in 1999, and the waste glass was accounted of 4.95 percent. However, with the increasing tonnage of disposal cost and existing disposal sites are reaching full capacity, recycling is currently accepted as a sustainable approach to waste management. Therefore, it's essential and urgent that the government in Taiwan establish the recycling and recovery framework for the minimization of the solid waste, reduction of materials and energy consumption, and the encouragement for the reuse, recycle and recovery development. To achieve this Boal, Taiwan has been strived for a long period of time in waste glass recovery and recycle. Waste glass, unlike other kinds of resource waste, is 100% recyclable. The EPA in Taiwan now center on a lot of different kinds of waste glass, such as glass container, flat glass, CRT glass, windshields glass, fluorescent lamps, and waste pesticide glass container. This article will focus on the framework of the recycling market access, and also try to provide some strategies to improve waste glass recycling efficiently.

  • PDF

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.25-30
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

Minimization of Trim Loss Problem in Paper Mill Scheduling Using MINLP (MINLP를 이용한 제지 공정의 파지 손실 최소화)

  • Na, Sung-hoon;Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.392-392
    • /
    • 2000
  • This study performs optimization of paper mill scheduling using MINLP(Mixed-Integer Non-Linear Programming) method and 2-step decomposing strategy. Paper mill process is normally composed of five units: paper machine, coater, rewinder, sheet cutter and roll wrapper/ream wrapper. Various kinds of papers are produced through these units. The bottleneck of this process is how to cut product papers efficiently from raw paper reel and this is called trim loss problem or cutting stock problem. As the trim must be burned or recycled through energy consumption, minimizing quantity of the trim is important. To minimize it, the trim loss problem is mathematically formulated in MINLP form of minimizing cutting patterns and trim as well as satisfying customer's elder. The MINLP form of the problem includes bilinearity causing non-linearity and non-convexity. Bilinearity is eliminated by parameterization of one variable and the MINLP form is decomposed to MILP(Mixed-Integer Linear programming) form. And the MILP problem is optimized by means of the optimization package. Thus trim loss problem is efficiently minimized by this 2-step optimization method.

  • PDF

Study on the Optimal Operation of ESS Considering Urban Railway Load Characteristic (도시철도 부하특성을 고려한 ESS의 최적 운영방안 연구)

  • Heo, Jae-Haeng;Shin, Seungkwon;Park, Jong-young;Kim, Hyeongig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1508-1516
    • /
    • 2015
  • This paper proposes the optimal operation of ESS (Energy Storage System) in the substation of urban railway in an economical point of view. Since the load patterns of urban railway have different characteristics with the general power demand pattern, the characteristics motivate us to develop the optimal operation algorithm for ESS under Korean electricity billing system. We also introduce two different ESS operation strategies for peak load shaving and electricity consumption charge minimization respectively, and formulate each scheme. Historical data from Namgwangju substation are used for economical comparison of the strategies. The results show that the proposed algorithm is the most cost-effective ESS operation scheme among the strategies and reduces around 5 percent of electric charges compared to the charge without ESS operation.