• 제목/요약/키워드: Energy Conservation Technology

검색결과 310건 처리시간 0.027초

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Remedy for ill-posedness and mass conservation error of 1D incompressible two-fluid model with artificial viscosities

  • Byoung Jae Kim;Seung Wook Lee;Kyung Doo Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4322-4328
    • /
    • 2022
  • The two-fluid model is widely used to describe two-phase flows in complex systems such as nuclear reactors. Although the two-phase flow was successfully simulated, the standard two-fluid model suffers from an ill-posed nature. There are several remedies for the ill-posedness of the one-dimensional (1D) two-fluid model; among those, artificial viscosity is the focus of this study. Some previous works added artificial diffusion terms to both mass and momentum equations to render the two-fluid model well-posed and demonstrated that this method provided a numerically converging model. However, they did not consider mass conservation, which is crucial for analyzing a closed reactor system. In fact, the total mass is not conserved in the previous models. This study improves the artificial viscosity model such that the 1D incompressible two-fluid model is well-posed, and the total mass is conserved. The water faucet and Kelvin-Helmholtz instability flows were simulated to test the effect of the proposed artificial viscosity model. The results indicate that the proposed artificial viscosity model effectively remedies the ill-posedness of the two-fluid model while maintaining a negligible total mass error.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

국내 발전소 지붕방수설계 시스템 및 단열 성능에 관한 연구 (A Study on the domestic power plant roof waterproofing system & insulation efficiency)

  • 정광호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권1호
    • /
    • pp.33-42
    • /
    • 2011
  • As the development of construction technology and new materials, building requirements has been varied gadually. Comfortable environment and serviceability of production activity and energy conservation are being dealt with very seriously. Recently localization of engineering technology of Power Plant, however, construction materials and domestic technology are being developed forcingly. According to above topics this thes is going to study roof waterproofing, thermal insulation and evaluate adiabatic performance and evaluation of properties of waterproofing materials and energy conservation. The results of studying and evaluating of roof waterproofing, thermal insulation and adiabatic performance of Power Plant are as follows. 1. Sheet waterproofing method is better than that of asphalt waterproofing method in that adaptability of wearhertight, thermal resistant, contraction and expansion. 2. It is required to replace polyurethane or ethylene used as thermal insulation with rock wool which is noncombustible materials. 3. It is recommended to usd outer insulation method than inner insulation method due to superioty of outer insulation method. Efficiency of insulation materials used in power plant is generally good except perlite mortar used in the power plant(YGN 1-2, GRI 1-2).

녹색건축물 디자인가이드라인과 녹색건축 인증 비교를 통한 외피계획요소에 관한 연구 - 공공기관 지방이전 건축물을 중심으로 - (Comparison of the Building Envelope Design Elements between Green Building Design Guidelines and Green Building Certification Criteria - Focus on public institution relocation projects -)

  • 김소영;황성필;오준걸
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.61-68
    • /
    • 2014
  • Due to rapid climate changing and the need for energy conservation, environment friendly initiatives have emerged, and regulations to support establishment of green structures in construction have been legislated and enacted. In this study, the supporting of green build method act for rapid climate change and energy conservation. Using green build method, protecting surrounding ecosystem and developing green building continuously, I suggest alternative for protection of the environment. Identifies Envelope Design Elements among various construction Green Building Design Guidelines. Green buildings that we extract the Green Building envelope design from Design Guideline, select the object building through the green buildings examples of public institution relocation projects. Since then analyzes the planned schematic design and Green Envelope Design Elements and Green Building Certification(G-SEED). So, that future directions for planning correlation of Green Building and Design Guidelines about Green Design Elements Can be presented.

Mode Decomposition of Three-Dimensional Mixed-Mode Cracks using the Solution for Penny-Shaped Crack

  • Kim, Young-Jong;Cho, Duk-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.11-18
    • /
    • 2001
  • A simple and convenient method of analysis for obtaining the individual stress intensity factors in a three-dimensional mixed mode crack is proposed. The procedures presented here are based on the path independence of J integral and mutual or two-state conservation integral, which involves two elastic fields. The problem is reduced to the determination of mixed mode stress intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. Some numerical examples are presented to investigate the effectiveness and applicability of the method for a three-dimensional penny-shaped crack problem under mixed mode. This procedure is applicable to a three-dimensional mixed mode curved crack.

  • PDF

한국 에너지 정책체계의 전환방안 연구 (An Experimental Suggestion on the Transformation of Korean Energy Policies)

  • 박중구
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2010
  • 본 정책총설은 세계적인 에너지 수급의 불안정과 온실가스 감축에 대한 규제에 대응하여 안정적 경제성장과 환경보호를 달성할 수 있는 대안을 제시하고 있다. 이를 위해 에너지 수급전체를 최적화하는 에너지체인(energy chain) 접근방식을 채택하고 있다. 에너지체인에 걸쳐 저탄소 친환경 에너지기술의 개발 및 산업화, 주력산업의 저탄소 친환경화, 에너지 효율성의 제고, 에너지원의 확보, 그리고 이들 정책간 정책군의 형성 등을 제시하고 있다.

원자력 이용개발에서의 기술혁신의 정책방향 고찰

  • 양맹호
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2001년도 춘계학술대회:발표자료
    • /
    • pp.531-544
    • /
    • 2001
  • The use and development of nuclear energy has a long history more than 5o years and is facing a rapid changing environment in technological innovations in order to meet the requirements of energy supply, environmental conservation and social and political demands. The innovation of nuclear technologies are also necessary continuously in order to contribute for the progress of national economy and industry development, improvement of public health, progress of nation science and technology and furthermore is very important for the survival of nuclear industry and strengthening of competition of nuclear technologies. Major directions of the innovation of nuclear technologies would be the enhance ment of safety and economy of the use of nuclear energy, securing od nuclear proliferation-resistance, safe management of radioactive wastes, technology development for newly emerging markets and improvement of public health.

  • PDF

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구 (Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit)

  • 정진우;주정훈;조동우
    • 한국태양에너지학회 논문집
    • /
    • 제38권3호
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.