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a b s t r a c t

The two-fluid model is widely used to describe two-phase flows in complex systems such as nuclear
reactors. Although the two-phase flow was successfully simulated, the standard two-fluid model suffers
from an ill-posed nature. There are several remedies for the ill-posedness of the one-dimensional (1D)
two-fluid model; among those, artificial viscosity is the focus of this study. Some previous works added
artificial diffusion terms to both mass and momentum equations to render the two-fluid model well-
posed and demonstrated that this method provided a numerically converging model. However, they
did not consider mass conservation, which is crucial for analyzing a closed reactor system. In fact, the
total mass is not conserved in the previous models. This study improves the artificial viscosity model
such that the 1D incompressible two-fluid model is well-posed, and the total mass is conserved. The
water faucet and Kelvin-Helmholtz instability flows were simulated to test the effect of the proposed
artificial viscosity model. The results indicate that the proposed artificial viscosity model effectively
remedies the ill-posedness of the two-fluid model while maintaining a negligible total mass error.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The two-fluid model has been widely used to describe two-
phase flows in complex systems such as nuclear reactors. The
two-fluid model consists of two sets of conservation equations for
the mass, momentum, and energy of the gas and liquid phases.
Although two-phase flow has been successfully simulated, it is well
known that the standard two-fluid model suffers from an ill-posed
nature. The two-fluid model may not simulate the flow physics
when the relative velocity between the two phases exceeds a
critical value [1,2].

Various numerical/physics-based regularization methods have
been studied to remedy the ill-posedness of the one-dimensional
(1D) two-fluid model. These methods include the virtual mass
[3], surface tension [2], hydrostatic pressure [4], interfacial pressure
[5,6], two-pressure [7], interfacial velocity [8], flow distribution [9],
and artificial viscosity [10]. This study focuses on artificial viscosity.

Artificial viscosity terms are often added to momentum equa-
tions to enhance numerical stability [11] and render the six-
by Elsevier Korea LLC. This is an op
equation two-fluid model well-posed [10]. Holmås et al. [12]
were the first to add artificial axial diffusion terms to both the mass
and momentum equations for 1D incompressible flow. They indi-
cated that the addition of artificial diffusion terms to both the mass
and momentum equations provided a numerically converging
model for an incompressible flow. However, the physical meaning
of artificial diffusion in the mass equation was not provided. Full-
mer et al. [13] related the artificial diffusion terms to effective
viscosities. Fullmer et al. [14] extended the artificial diffusion
concept to create a model that prescribed the cutoff length scale.

The addition of artificial diffusion terms to both the mass and
momentum equations effectively renders the two-fluid model
well-posed. However, the previous studies did not consider the
conservation of mass, which is crucial in the analysis of a closed
reactor system. The mass error caused by the artificial diffusion
terms in the mass equations must be examined.

The main purpose of this study is to improve the artificial vis-
cosity model such that the 1D incompressible two-fluid model is
well-posed and the total mass is conserved. The remainder of this
paper is organized as follows. In Section 2, the previous artificial
viscosity model is described, and an improved artificial viscosity
model is proposed to resolve the mass conservation problem of the
en access article under the CC BY license (http://creativecommons.org/licenses/by/
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previous model. In Section 3, the water faucet problem and the
Kelvin-Helmholtz instability are simulated to examine the effect of
the proposed model. Finally, the conclusions are presented in
Section 4.
2. Theory

2.1. Previous artificial viscosity model

The simplified mass and momentum equations for incom-
pressible, isothermal, and inviscid flow in a constant-area channel
[13] [14] are

vag
vt

þ v

vx

�
agug

� ¼ εg
v2ag
vx2

(1)

val
vt

þ v

vx
ðalulÞ ¼ εl

v2al
vx2

(2)

agrg

�
vug
vt

þug
vug
vx

�
¼ �ag

vp
vx

þ rgng
v

vx

�
ag

vug
vx

�
þ agrggx (3)

alrl

�
vul
vt

þul
vul
vx

�
¼ �al

vp
vx

þ rlnl
v

vx

�
al
vul
vx

�
þ alrlgx (4)

where a, u, ε, r, p, n, and g are the phasic fraction, velocity, artificial
viscosity related to phase change, density, pressure, artificial vis-
cosity, and gravity, respectively. Subscripts g and l indicate the gas
and liquid phases, respectively. The momentum equations are
expressed in the non-conservative form, and various force terms,
such as interfacial drag, wall drag, and virtual mass effect, are
omitted.

Equations (1)e(4) can be provided in the matrix form:

A
vJ

vt
þB

vJ

vx
þ C

v2J

vx2
þ D ¼ 0 (5)

where J ¼ �
ag ug ul p

�
is the vector of the independent

variables. The evolution of J is considered by assuming a small
perturbation in the form of a traveling wave as follows:

J¼J0 þ ddJexp½iðkx�utÞ� (6)

where J0 is the reference state, ddJ is the vector of the pertur-
bation amplitudes, k is the wavenumber, and u is the growth rate.
The perturbation equation is obtained by substituting Eq. (6) into
Eq. (5). For the perturbation equation to have a nontrivial solution,
it must be:���uA� kB� ik2C

���¼0 (7)

When the artificial viscosities are not considered (εg ¼ εl ¼
ng ¼ nl ¼ 0), Eq. (7) yields

uI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agalrgrl

p
r

uRk (8)

where uI is the imaginary part of the growth rate and determines
the stability, r ¼ agrl þ alrg , and uR ¼ |ug e ul|. The standard two-
fluid model is ill-posed except for uR ¼ 0.

For non-zero artificial viscosities, the critical wavenumber can
be analytically obtained as
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uI becomes negative for short waves such that k > kc and the
model is well-posed. If the artificial viscosities of the two phases are
assumed to be equal (ε¼εg¼εl and n¼ ng¼ nl), the growth rate can
also be analytically derived as
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Then, the critical wavenumber is given by

kc ¼ 1ffiffiffiffiffi
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Fullmer et al. [14] considered a case in which all artificial vis-
cosities were the same (n ¼ ng ¼ nl ¼ εg ¼ εl) and obtained
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In this study, the Fullmer's method [14] is designated as “pre-
vious model.”

If εg ¼ εl ¼ 0 and n ¼ ng ¼ nl are assumed, then Eq. (10) is
reduced to
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Conversely, if ε ¼ εg ¼ εl and ng ¼ nl ¼ 0 are assumed,
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In Eqs. (14) and (15), as k increases, uI approaches zero but does
not become negative. In other words, unless the artificial viscosities
are applied to both the mass and momentum equations, the
incompressible two-fluid model remains ill-posed.

Mathematically, even small values of the artificial viscosities
render the two-fluid model well-posed. While the effect of nu-
merical viscosity is dependent on the grid size, the artificial vis-
cosities explicitly filter out the short waves, and the effect is
independent of the grid size.

However, this method is problematic. Equations (1) and (2) are
the phase-fraction equations for incompressible flow. Equations (1)
and (2) can be rewritten as:
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The sum of the right-hand sides of the above two equations is
not zero. Even though a slight non-conservation of each phasemass
is permitted because of the presence of εk, the total mass must be
conserved to the possiblemaximum extent. The conservation of the
total mass is crucial for the analysis of the closed reactor system. If
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εg and εl are set to small values, the total mass error can be reduced.
However, as shown in Eq. (9), the critical wavenumber becomes so
large that the remedy for ill-posedness may not be effective.
2.2. Present artificial viscosity model

To avoid the severe problem caused by the non-conservation of
the total mass, we used the mass equations as follows:
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The sum of the right-hand sides of the above two equations is
zero. The two-fluid model given by Eqs. (18), (19), (3) and (4) can be
provided in the matrix form given by Eq. (5) with
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If n ¼ ng ¼ nl is assumed, the critical wavenumber can be
analytically obtained using Eq. (7) as follows:
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uI becomes negative for the short waves such that k > kc, and the
two-fluid model is well-posed.

If ε
0 ¼ rn is further assumed, the growth rate can also be

analytically derived as
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Then, the critical wavenumber is given by
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However, this method may not be appropriate despite the
mathematically concise expression for the growth rate. When the
void fraction is so large that r ¼ agrl þ alrg is close to the liquid
density, the large value of ε0 ¼ rn may result in considerable phasic
mass errors.

Hence, instead of using ε
0 ¼ rn, we propose to assume ε

0 ¼ rgn;
the use of gas density diminishes the amount of the unwanted
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phase change. Then, Eq. (23) is rewritten as
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In this study, the two-fluid model using n ¼ ng ¼ nl and ε
0 ¼ rgn

is designated as “present model.” The obvious advantages of this
method are the conservation of the total mass and reduced phasic
mass errors.We nowcompare the critical wavenumber given by Eq.
(26) with that given by Eq. (13). Through algebraic manipulation,
we can prove that kc,Present / kc,Fullmer is always greater than unity.
The stabilizing effect of the present model is lower than that of the
previous model.
3. Results and discussion

The SPACE code is the latest thermal-hydraulics code developed
by Korean nuclear industries and research institutes [15], which
deals with the two-fluid and three-field governing equations that
comprise gas, continuous liquid, and droplet fields. In this study,
the artificial viscosities were added to the mass and momentum
equations for the gas and continuous liquid fields. To eliminate the
droplet effect, the rates of droplet entrainment and depositionwere
intentionally set to zero. Code calculations were performed for two
problems to test the effects of the artificial viscosities. The virtual
mass, interfacial drag, and wall drag were not considered in the
code calculations.
3.1. Water-faucet flow

The water faucet problem [16] has been widely used as a
benchmark to test two-fluid models or numerical methods. This
problem describes the free fall of a column of water with a non-zero
initial velocity in a vertical pipe. At the top inlet, the water fraction
and velocity are maintained at their initial values. The water col-
umn that passes through the top inlet gradually thins as the water
column velocity increases, whereas the diameter of the water col-
umn initially present in the pipe remains unchanged. There is a
discontinuity in the water fraction until the water column initially
present in the pipe completely exits the vertical pipe.

This study considered an air-water flow in a vertical pipe with
diameter D ¼ 1 m and length L ¼ 6 m at atmospheric pressure and
room temperature. Initially, the water fraction and velocity were
assumed to be uniform as al,0 ¼ 0.8 and ul,0 ¼ 10 m/s, respectively.
Theoretically, the distance xd from the top inlet to thewater fraction
discontinuity location is given by

xd ¼ul;0t þ 0:5gt2 (27)

The local water velocity and fraction are respectively given by

ulðx; tÞ¼
8<:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2l;0 þ 2gx

q
; x< xd

ul;0 þ gt; x � xd
(28)

alðx; tÞ¼
�
al;0ul;0



ul; x< xd

al;0; x � xd
(29)

Unless stated otherwise, the water fraction distributions were
compared at the same instant of time (t ¼ 0.3 s) for different grid
sizes. The test grid sizes were Dx ¼ 120 mm (50 cells), 60 mm
(100 cells), 30 mm (20 cells), 15 mm (400 cells), 7.5 mm (800 cells),
6 mm (1000 cells), and 3.75 mm (1600 cells). For each code
calculation, the time step (Dt) was fixed by setting the Courant



Fig. 2. Water fraction and total mass error ratio when the previous model is used.
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number to ul (0.6 m, 0.3 s) Dt / Dx ¼ 0.043.
Fig. 1 compares the water fraction distributions at the same

instant of time (0.3 s except for Dx ¼ 6 mm) for different levels of
grid refinement when the artificial viscosities are not considered.
The steepness of the curve near the discontinuity location increases
with a decrease in the grid size. However, for Dx ¼ 6 mm, the code
calculationwas abnormally terminated at 0.291574 s, mainly due to
the ill-posed nature and the appearance of shorter waves beyond
the grid-dependent numerical viscosity. In Fig. 1, the curve of
Dx ¼ 6 mm corresponds to the data at 0.291574 s. The total mass
error ratio was defined as

eðtÞ¼
��mtot �

�
mtot;0 þmin �mout

���
mtot;0 þmin �mout

� 100 (30)

wheremtot;0, mtot ,min, and mout denote the initial total mass in the
pipe, total mass in the pipe, total mass injected from the top inlet,
and total mass discharged through the bottom outlet, respectively.
As shown in Fig. 1, the total mass error ratio increases abnormally
immediately before the code calculation is terminated abnormally.

Fullmer et al. [14] adopted Eqs. (1)e(4) and assumed the all
kinematic viscosities are the same, i.e., n ¼ ng ¼ nl ¼ εg ¼ εl.
Further, they suggested the value of n as

n¼ l
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agalrgrl

p
r

uR (31)

Although the filter length l depends on the flow, the choice l ¼
2D is generally acceptable as an upper bound on the filter length.
We adopted l ¼ 2D. Fig. 2 shows the results when the previous
model is used. Because of the presence of artificial viscosities
(n � 0:2 m2/s), the water fraction distributions are smoother, and
the code calculation with Dx ¼ 3.75 mm successfully continues
until 0.3 s. However, because the coefficient on the right-hand side
of Eq. (17) is as large as εlrl ¼ nrl � 200 kg/m$s, the total mass error
ratio increases to 0.03%. In view of the short calculation time (0.3 s),
this level of mass error may cause a serious problem in the long-
Fig. 1. Water fraction and total mass error ratio when artificial viscosities are not
considered.
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term simulations of the closed reactor system. Therefore, the
mass error problem must be resolved.

Fig. 3 shows the results when the proposed model is used. The
value of n is determined using Eq. (31) and l ¼ 2D. As discussed in
Section 2.2, the advantages of the present method are the conser-
vation of total mass and reduction in phasic mass errors. As shown
in Fig. 3, the water fraction is well predicted even with
Dx ¼ 3.75 mm (1600 cells). Compared with the water fraction
distributions shown in Fig. 2, the water fraction curves are closer to
the theoretical line. As the grid is refined, the results converge. In
particular, the total mass error ratios reduce significantly because
Fig. 3. Water fraction and total mass error ratio when the present model is used.



Fig. 4. Evolution of the water wave when artificial viscosities are not considered.

Fig. 5. Mass error ratio over time when the artificial viscosities are not considered.
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the coefficient on the right-hand side of Eq. (19) is as small as ε0 ¼
rgn � 0:2 kg/m$s. Fig. 3 clearly demonstrates the advantages of the
present model.

3.2. Kelvin-Helmholtz instability

An unstable flow in a horizontally stratified channel, known as
Kelvin-Helmholtz instability, was considered. To simulate this flow,
agrggyHvag=vx and �alrlgyHval=vx were added to the right-hand
sides of Eqs. (3) and (4), respectively, to account for the hydro-
static pressure effect, where H is the cross-sectional channel size.
Because the theory is well known, a detailed dispersion analysis is
not described here.

This study considered an airewater flow in a rectangular hori-
zontal channel at atmospheric pressure and room temperature. The
channel height and length were H ¼ 2.5 cm and L ¼ 0.5 m,
respectively. Two sides of the pipe were connected to each other.
Initially, the water fraction was set as follows:

al ¼
�
0:5þ 0:01 sin½2pðx� 0:1Þ=0:1� ; 0:1 � x<0:2 m
0:5 ; otherwise

(32)

A long wave with a small amplitude was present in the stratified
interface. For the inviscid and incompressible flow, the critical
relative velocity for stability is calculated as�����ug � uljcrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
�
rg � rl

�
gH

rgrl

s
¼10:3 m=s (33)

If the relative velocity is larger than the critical velocity, the flow
becomes unstable and the wave grows over time. The initial air and
water velocities were set to 13.0 m/s and 1.0 m/s, respectively, to
consider an unstable flow. Interestingly, the critical condition is
identical to the onset condition of the ill-posedness of the two-fluid
model without artificial velocities. The test grid sizes were
Dx ¼ 10 mm (50 cells), 4 mm (125 cells), 2 mm (250 cells), 1 mm
(500 cells), 0.5 mm (1000 cells), and 0.25 mm (2000 cells). For each
code calculation, the time step (Dt) was fixed by setting the Courant
number to 0.26.

Fig. 4 shows the spatial and temporal evolution of the long wave
when the artificial viscosities are not considered. The time interval
between the curves is 0.02 s. For Dx ¼ 10 mm, the wave decays
marginally in the early stage and propagates while maintaining the
amplitude. Supposedly, the flow instability and grid-dependent
numerical viscosity are balanced. The smaller the grid size, the
more rapidly the wave grows. For Dx ¼ 1 mm, 0.5 mm, and
0.25 mm, the code calculations were abnormally terminated at
0.161076, 0.0999954, and 0.0570595 s, respectively, which may be
due to the dominant effect of the ill-posed nature against the nu-
merical viscosity effect. It is shown in Fig. 5 that themass error ratio
increases abruptly immediately before the code calculation is
terminated abnormally.

Figs. 6 and 7 show the results of the previous model based on
Eqs. (1), (2), (3), and (4). All calculations are successfully continued
until 0.2 s. For Dx ¼ 10 mm, the wave tends to decay continuously.
For other grid sizes, the waves decay marginally in the early stage
and propagate while maintaining their amplitudes. The large sta-
bilizing effect of the previous model might be acceptable in view of
the code calculation success. However, the total mass error ratio, as
shown in Fig. 7, reaches 0.01%. This level of mass error may cause
serious problems in the long-term simulations of the closed reactor
system.

Now, we turn to the present model. The results of the present
model based on Eqs. (18), (19), (3), and (4) are shown in Figs. 8 and
4326
9, respectively. The wave growth over time is successfully pre-
dicted, except for Dx ¼ 10 mm. The artificial viscosities of the
present model enable the simulation of the unstable wave. The
mass errors are negligible, as shown in Fig. 9. The present model
has less stabilizing effect than the previous model but renders the
two-fluidmodel well-posed. More importantly, the total mass error



Fig. 6. Evolution of the water wave when the previous model is used.

Fig. 7. Mass error ratio over time when the previous model is used.

Fig. 8. Evolution of the water wave when the present model is used.

Fig. 9. Mass error ratio over time when the present model is used.
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is significantly reduced.
Fig. 10 compares the water fraction distributions along the

channel at the same instant of time (0.1 s) for different levels of grid
refinement of different two-fluid models. For the model without
artificial viscosities, as shown in Fig. 10 (a), the curves do not
converge, and large fluctuations of al are observed in the curve of
4327
Dx ¼ 0.5 mm. However, for the present model shown in Fig. 10 (c),
the curves are smooth and converge as the grid is refined,
demonstrating that the proposed well-posed model is appropriate.

So far, we have showed that the present two-fluid model
remedies the ill-posedness and mass conservation error. Vaid-
heeswaran and de Bertodano [17] developed a well-posed two-
fluid model for flow bubbly flows based on bubble collision



Fig. 10. Water fraction along a channel at the same instant of time (0.1 s) for different
levels of grid refinement: (a) no artificial viscosities are considered, (b) previous model,
(c) present model.
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mechanism. The analysis with one-dimensional two-fluid model
was extended to a multi-dimensional CFD application, and the
grid convergence was shown to be feasible. Considering the pre-
vious work, it is expected that the present one-dimensional two-
fluid model concept can be extended to a multi-dimensional CFD
applications.

4. Conclusions

The artificial viscosities in both the mass and momentum
equations render the two-fluid model well-posed. However, the
total mass was not conserved in the previous artificial viscosity
model. Non-conservation of the total mass may cause serious
problems in the analysis of the closed reactor system.

To resolve this problem, we suggested using the following mass
equations (Eqs. (18) and (19)):

v

vt

�
agrg

�þ v

vx
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agrgug
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0v
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0v
2al
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For ε
0 ¼ rgn, the critical wavenumber based on linear stability

analysis was obtained (Eq. (26)) as follows:
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�
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p �
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� uR

Compared with the previous artificial viscosity model, the pre-
sent artificial viscosity model reduced both total and phasic mass
errors.

The water faucet problem was simulated to verify the effects of
the present model. Compared with the water fraction distributions
of the previous model, those of the present model were closer to
the theoretical line. Moreover, the total mass error was significantly
reduced.

An unstable flow in a horizontally stratified channel was
simulated. In the previous model, the waves decayed marginally in
the early stage and propagatedwhile maintaining their amplitudes.
The large stabilizing effect of the previous model might be
acceptable considering the code calculation success. However, the
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total mass error ratio reached 0.01%. This level of mass error may
cause serious problems in the long-term simulations of the closed
reactor system. However, the present artificial viscosity model
successfully demonstrated the growth of unstable waves. More
importantly, the mass errors were negligible. In particular, the
water fraction distributions at the same instant of time were
smooth and nearly converged as the grid was refined.

From the results, we conclude that the proposed artificial vis-
cosity model effectively remedies the ill-posedness of the two-fluid
model while maintaining a negligible total mass error.
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