• 제목/요약/키워드: Energy Analysis Model

Search Result 4,503, Processing Time 0.036 seconds

A Scalability based Energy Model for Sustainability of Blockchain Networks (블록체인 네트워크의 지속 가능성을 위한 확장성 기반 에너지 모델)

  • Seung Hyun Jeon;Bokrae Jung
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.51-58
    • /
    • 2023
  • Blockchains have recently struggled to design for the ideal distributed trust networks by solving scalability trilemma. However, local conflicts between some countries lead to imbalance on energy distribution. Besides, blockchain networks (e.g., Bitcoin) currently consume enormous energy for transaction and mining. The existing data volume based trust model evaluated an increasing blockchain size better than Lubin's trust model in scalability trilemma. In this paper, we propose a scalability based energy model to evaluate sustainability for blockchain networks, considering energy consumption for transaction, time duration, and the blockchain size of growing blockchain networks. Through the rigorous numerical analysis, we compare the proposed scalability based energy model with the existing model for the satisfaction and optimal blockchain size. Thus, the scalability based energy model will provide an assessment tool to choose the proper blockchain networks to solve scalability trilemma problem and prove sustainability.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model (통계적 바람장모형에의한 고해상도(1Km×1Km)풍력에너지지도 작성에 관한 연구)

  • Kim, Hea-Jung;Kim, Hyun-Sik;Choi, Young-Jean;Byon, Jae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1157-1167
    • /
    • 2010
  • This paper details a method for establishing a wind energy map having($1Km{\times}1Km$) resolution. The map is essential for measurement and efficiency-testing of wind energy resources and wind site analysis. To this end, a statistical wind field model is estimated that covers 345,682 regions obtained by $1Km{\times}1Km$ lattices made over South Korea. The paper derives various characteristics of a regional wind energy resource under the statistical wind field model and estimates them to construct the wind energy map. Kolmogorov-Smirnov test, based on TMY(typical meteorological year) wind data of 76 weather station areas, shows that a Log-normal model is adequate for the statistical wind field model. The model is estimated by using the wind speed data of 345,682 regions provided by the National Institute of Meteorological Research(NIMR). Various wind energy statistics are studied under the Log-normal wind field model. As an application, the wind energy density(W$/m^2$) map of South Korea is constructed with a resolution of $1Km{\times}1Km$ and its utility for the wind site analysis is discussed.

Analysis of the Castalia Simulator to Implement User-friendly Simulator for Solar Energy Harvesting WSNs (사용자 친화형 태양 에너지 기반 센서 네트워크 시뮬레이터 구현을 위한 Castalia 시뮬레이터 분석)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.743-746
    • /
    • 2013
  • Most of existing simulator for wireless sensor networks (WSNs) models the battery-based sensor and provides the MAC and routing protocols designed for the battery-based WSNs. Recently, however, as the energy harvesting sensor systems are studied widely, the require of the simulator for them is getting increased; but the related work is insignificant. Unlike the existing simulators, the simulator for the energy-harvesting WSNs requires the new energy model which is integrated with the energy-harvesting model, rechargeable battery model and energy-consuming model. Additionally, it should provide the well-known MAC and routing protocols designed for the energy-harvesting WSNs, and also provide the user-friendly interface for the convenient usage. In this work, we analysis the existing Castalia simulator and revise it for the user-friendly simulator for the solar energy harvesting WSNs.

  • PDF

MODEL FOR SUBWAY-INDUCED STRUCTURAL VIBRATION (지하철 진동이 구조물에 미치는 영향분석 모델)

  • 김희철;이동근;민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.199-204
    • /
    • 1993
  • Noise and vibration induced by subway operation are one of the major factor that annoying residents living near the. railway. In general, lateral vibration was the major concern when we are considering vibration of the building. Since the energy due to earthquake is enormous it affects wide area. However, the vertical vibration became a major concern in considering the vibration induced by subway because relatively smaller energy affects only nearby areas than that of earthquake. Analysis model of the structure for the vertical vibration should consider the effect of beam vibration. Thus, the model of the structure for the lateral vibration can not be applied. Appropriate analysis model which can consider the inertia force of the beam is necessary when analyzing a structure for the vertical vibration. Modeling technique for the vertical vibration analysis of structures has been studied on this paper. It is recommeneded to use 2 or more elements for columns and to use 3 or more elements for beams when analyzing structures for vertical vibration induced by subway.

  • PDF

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.