• Title/Summary/Keyword: Energetic Efficiency

Search Result 48, Processing Time 0.023 seconds

Principle and Research Trends of Triplet-triplet Annihilation Upconversion (삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황)

  • Lee, Hak Lae;Shin, Sung Ju;Lee, Myung Soo;Choe, Hyun Seok;Kim, Jae Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.731-744
    • /
    • 2017
  • Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity (Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가)

  • Lee, Woo-Hyoung;Choi, Kwang-Il;Kang, Dong-Cheon;Beak, Su-Woong;Lee, Suk-Ho;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Feeding di-ammonium phosphate as a phosphorous source in finishing lambs reduced excretion of phosphorus in feces without detrimental effects on animal performance

  • Koolivand, Abolfazl;Yari, Mojtaba;Khalaji, Saeed;Jonker, Arjan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.527-532
    • /
    • 2019
  • Objective: Phosphorous (P) sources with greater bioavailability might increase animal production efficiency and decrease environmental pollution. The objective of current study was to determine animal performance, nutrient digestibility, blood metabolites and fecal P concentration in finishing lambs fed a diet with either di-calcium phosphate (DCP) or di-ammonium phosphate (DAP) as a P source. Methods: Twelve 4-month-old male lambs (initial body weight $24.87{\pm}3.4kg$) were randomly allocated to a diet with either DCP or DAP (~261 g/kg of total diet P) fed ad libitum for 93 days. Diets were iso-nitrogenous and iso-energetic and had same calcium (Ca) and P concentrations. Results: The DAP contained 19.7 g/kg of dry matter (DM) Ca, 185.4 g/kg DM P and 14,623 ppm fluorine, while DCP contained 230.3 g/kg DM Ca, 195.2 g/kg DM P and 1,039 ppm fluorine. The diet with DAP contained 60 ppm fluorine while the diet with DCP contained 13 ppm fluorine. Lambs fed the diet with DAP tended to have a greater daily DM intake compared to those fed diet with DCP (p = 0.09). Lambs fed DAP had greater plasma P concentration and alkaline phosphatase activity ($p{\leq}0.01$) compared with lambs fed DCP. Dry matter and organic matter digestibility of the diets were similar between two treatments at days 60 and 90, while they were greater in lambs fed DCP (p<0.05) at day 30 of the trial. Feeding DAP increased P digestibility (58.7% vs 50.2%; p<0.05) and decreased fecal P concentration in lambs compared with feeding DCP (3.1 vs 3.8 g/kg DM; p<0.05). Conclusion: Providing ~261 g/kg of total diet P as DAP in the diet of finishing lambs improved the bioavailability of P in the body and decreased excretion of P in feces without affecting lamb performance.

Changes in Sleep Patterns and Mood States of Shift Workers Following Nocturnal Light Exposure (교대근무자에서 야간 광 노출에 따른 수면양상 및 기분상태 변화)

  • Kwon, Ki-Bum;Yoon, In-Young;Kang, Sang-Bum;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • Objectives: We intended to observe changes in sleep patterns and mood states of night-shift workers following light exposure. We also estimated the degree of tolerance of light exposure. By studying these, we investigated the possibility of applying light therapy to night-shift workers for improving their adaptation. Methods: Twelve night-shift nurses working at Yong-In Mental Hospital volunteered to participate in this study. The study consisted of 3 parts: 1) night-shift control study; 2) light exposure study; 3) day-shift control study. All the nurses accomplished 3 parts of the study, each of which continued for 3 days, except one nurse who did not participate in day-shift control study. During light exposure study, nurses were exposed to bright light for 4 hours from 1AM to 5AM. Sleep patterns were evaluated with wrist actigraphy and automatic sleep analysis program. Mood states and side effects of light exposure were assessed with self-report scales. Results: Sleep period time, total sleep time, and sleep efficiency were increased following light exposure compared with night-shift control study. Light exposure study showed no difference from day-shift control study in above-mentioned sleep parameters. Daily fluctuation of sleep efficiency was less prominent during light exposure study than during night-shift control study. During light exposure study, the subjects felt more elated and energetic in the evening after daytime sleep than during night-shift control study. None of the subjects complained of severe side effects related to light exposure on the third day of light exposure. Tolerance of side effects was noted to develop with the repetition of light exposure. Conclusion: Light exposure improved the daytime sleep of night-shift workers to the level of normal nighttime sleep, making the subjects more elated and energetic. Side effects of light exposure were found to be tolerable. Light exposure seems to be safely applicable to night-shift workers for their adaptation.

  • PDF

Effect of Feeding Calcium Salts of Palm Oil Fatty Acids on Performance of Lactating Crossbred Cows

  • Purushothaman, Sajith;Kumar, Anil;Tiwari, D.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.376-385
    • /
    • 2008
  • Twenty lactating crossbred cows yielding 10 to 15 litres of milk daily during mid lactation were selected and divided into four groups of five animals to assess the effect of feeding calcium soaps of palm oil fatty acids (bypass fat) on milk yield, milk composition and nutrient utilization in lactating crossbred cows. The animals in groups 1 (control), 2, 3 and 4 were fed concentrate mixture containing 0 (no bypass fat), 2, 4 and 6% bypass fat, respectively. The average daily dry matter consumption in the various groups ranged from 13.1 to 13.6 kg and showed no significant difference among treatment groups. There was no significant difference among different groups in digestibility of DM, OM, CP and CF, however, ether extract digestibility in cows of groups 2 and 4 was significantly (p<0.05) higher than the control group. The average milk yields of the cows in group 3 (4% bypass fat) showed a significantly (p<0.05) higher value than cows of groups 1 and 2. Similarly, a significant (p<0.05) increase in fat yield, 4% FCM yield and SNF yield was observed for the cows in group 3 (4% bypass fat). The milk composition in terms of total solids, fat, lactose, protein, solids-not-fat and ash percentage showed a varying response and bypass fat feeding did not have any effect on milk composition of cows in different groups. The gross and net energetic efficiency of milk production ranged from 23.6 to 27.5% and 37.1 to 44.4%, respectively, and showed no significant difference among different treatment groups. The gross and net efficiency of nitrogen utilization for milk production ranged from 24.0 to 28.7% and 37.2 to 43.5%, respectively, and no significant difference was noted among different treatment groups. The supplementation with calcium salts of palm oil fatty acid reduced the proportion of caproic, caprylic and capric acids and significantly (p<0.01) increased the concentration of palmitic, oleic, stearic, linoleic and linolenic acids in milk fat with increase in level of bypass fat supplementation. It was concluded that incorporation of calcium salts of palm oil fatty acids at a 4% level in the concentrate mixture of lactating crossbred cows improved the milk production and milk quality in terms of polyunsaturated fatty acids without affecting the digestibility of nutrients.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Effect of Age on Energy Requirement for Maintenance and Growth of Dorper and Hu Crossbred F1 Ewes Weighing 20 to 50 kg

  • Nie, H.T.;Wan, Y.J.;You, J.H.;Wang, Z.Y.;Lan, S.;Fan, Y.X.;Wang, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1140-1149
    • /
    • 2015
  • This research aimed to define the energy requirement of Dorper and Hu Hybrid $F_1$ ewes 20 to 50 kg of body weight, furthermore to study energy requirement changes with age and evaluate the effect of age on energy requirement parameters. In comparative slaughter trial, thirty animals were divided into three dry matter intake treatments (ad libitum, n = 18; low restricted, n = 6; high restricted, n = 6), and were all slaughtered as baseline, intermediate, and final slaughter groups, to calculate body chemical components and energy retained. In digestibility trial, twelve ewes were housed in individual metabolic cages and randomly assigned to three feeding treatments in accordance with the design of a comparative slaughter trial, to evaluate dietary energetic values at different feed intake levels. The combined data indicated that, with increasing age, the net energy requirement for maintenance ($NE_m$) decreased from $260.62{\pm}13.21$ to $250.61{\pm}11.79kJ/kg^{0.75}$ of shrunk body weight (SBW)/d, and metabolizable energy requirement for maintenance (MEm) decreased from $401.99{\pm}20.31$ to $371.23{\pm}17.47kJ/kg^{0.75}$ of SBW/d. Partial efficiency of ME utilization for maintenance ($k_m$, 0.65 vs 0.68) and growth ($k_g$, 0.42 vs 0.41) did not differ (p>0.05) due to age; At the similar condition of average daily gain, net energy requirements for growth ($NE_g$) and metabolizable energy requirements for growth ($ME_g$) for ewes during late fattening period were 23% and 25% greater than corresponding values of ewes during early fattening period. In conclusion, the effect of age upon energy requirement parameters in the present study were similar in tendency with previous recommendations, values of energy requirement for growth ($NE_g$ and $ME_g$) for Dorper and Hu crossbred female lambs ranged between the NRC (2007) recommendation for early and later maturating growing sheep.

Training Strategics for Future Farmers in Japan (농업인력증대를 위한 영농후계자 육성전략-일본의 사례를 중심으로-)

  • Sim, Jai-Sung
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 1999
  • As Japanese economy has been well developed, the manpower problem of farmland has also become one of the largest and the most crucial issues in the overall agricultural policy of the Japanese Government. Particularly, the energetic younger generation and a core of agricultural labor force, has drastically decreased, while the weak older generation has increased. The severity of manpower shortage in agricultural sector led to create a farmer training programs which had been vigorously begun by the Yamagata Prefecture, and a center for promoting local autonomy. The major purpose of education for enhancement of status of future farmers as well as the welfare of core farmhousehold is to provide them with technical of vocational education to give training to those who want to become agricultural technicians, rural leaders of practical farmers Educational program for future and young farmers put emphasis on practical trainings which are directly applied to proper farm management. As a supporting policy for promoting future farmers' activities, Prefecture-level supports were strengthened to develop technical capability, managerial and supervisory ability, and the ability to lead organized activity so that the farm youth may operate modern farms with higher efficiency and greater specialization. Political consideration was also made to develop a rich sense of farm management as well as the adaptability necessary to introduce technical and managerial innovations. Methological measurements on how the Korean government has to do for solving the problem of agricultural manpower facing in farmland in Korea were noted.

  • PDF