DOI QR코드

DOI QR Code

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity

Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가

  • 이우형 (녹색에너지연구원 기술사업실) ;
  • 최광일 (녹색에너지연구원 기술사업실) ;
  • 강동천 (녹색에너지연구원 기술사업실) ;
  • 백수웅 (녹색에너지연구원 기술사업실) ;
  • 이석호 (녹색에너지연구원 기술사업실) ;
  • 임철현 (녹색에너지연구원 기술사업실)
  • Received : 2014.01.13
  • Accepted : 2014.02.24
  • Published : 2014.03.01

Abstract

Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Keywords

References

  1. T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Husing, U. Kaiser, K. Landfester, and M. Wohlfahrt-Mehrens, Chem. Soc. Rev., 41, 5313 (2012). https://doi.org/10.1039/c2cs35013k
  2. C. Vericat, M. E. Vela, and R. C. Salvarezza, Phys. Chem. Chem. Phys., 7, 3258 (2005). https://doi.org/10.1039/b505903h
  3. Y. Wang, Q. Wang, X. Zhan, F. Wang, S. Muhammad, and J. He, Nanoscale, 5, 8326 (2013). https://doi.org/10.1039/c3nr01577g
  4. M. Shim, H. McDaniel, and N. Oh, J. Phys. Chem. Lett., 2, 2722 (2011). https://doi.org/10.1021/jz201111y
  5. L. Jing, W. Zhou, G. Tian, and H. Fu Chem. Soc. Rev., 42, 9509 (2013). https://doi.org/10.1039/c3cs60176e
  6. Y. Hong, C. G. Tian, B. J. Jiang, A. P. Wu, Q. Zhang, G. H. Tian, and H. G. Fu, J. Mater. Chem. A, 1, 5700 (2013). https://doi.org/10.1039/c3ta10218a
  7. S. H. Cho, J. W. Jang, J. W. Kim, J. S. Lee, W. Y. Choi, and K. H. Lee, Langmuir, 27 10243 (2011). https://doi.org/10.1021/la201755w
  8. W. Yang, F. Wan, S. Chen, and C. Jiang, Nanoscale. Res. Lett., 4, 1486 (2009). https://doi.org/10.1007/s11671-009-9425-4
  9. R. Wang, G. Jiang, Y. Ding, Y. Wang, X. Sun, X. Wang, and W. Chen, ACS Appl. Mater. Interfaces, 3, 4154 (2011). https://doi.org/10.1021/am201020q
  10. W. Ho and J. C. Yu, J. Mol. Catal. A: Chem., 247, 268 (2006). https://doi.org/10.1016/j.molcata.2005.11.057
  11. Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Lia, and J. Kang, J. Mater. Chem., 21, 6020 (2011). https://doi.org/10.1039/c0jm03971c
  12. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Adv. Mater., 20, 3248 (2008). https://doi.org/10.1002/adma.200800145
  13. S. H. Cho, J. W. Jang, S. H. Lim, H. J. Kang, S. W Rhee, J. S. Lee, and K. H. Lee, J. Mater. Chem., 21, 17816 (2011). https://doi.org/10.1039/c1jm14014k
  14. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C. S. Lee, Nano Lett., 11, 4138 (2011). https://doi.org/10.1021/nl201934k
  15. S. A. Vanalakar, S. S. Mali, R. C. Pawar, N. L. Tarwal, A. V. Moholkar, J. H. Kim, and P. S. Patil, J. Appl. Phys., 112, 044302 (2012). https://doi.org/10.1063/1.4745881