• Title/Summary/Keyword: Endothelialization

Search Result 18, Processing Time 0.026 seconds

Fabrication of Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and YIGSR Peptides

  • Choi, Won-Sup;Bae, Jin-Woo;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Mi-Hee;Park, Jong-Chul;Kwon, Il-Keun
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.458-463
    • /
    • 2009
  • Polyurethane (PU) is widely used as a cardiovascular biomaterial due to its good mechanical properties and hemocompatibility, but it is not adhesive to endothelial cells (ECs). Cell adhesive peptides, GRGDS and YIGSR, were found to promote adhesion and spreading of ECs and showed a synergistic effect when both of them were used. In this study, a surface modification was designed to fabricate an EC-active PU surface capable of promoting endothelialization using the peptides and poly(ethylene glycol) (PEG) spacer, The modified PU surfaces were characterized in vitro. The density of the grafted PEG on the PU surface was measured by acid-base back titration to the terminal-free isocyanate groups. The successful immobilization of pep tides was confirmed by amino acid analysis, following hydrolysis, and contact angle measurement. The uniform distribution of peptides on the surface was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). To evaluate the EC adhesive property, cell viability test using human umbilical vein EC (HUVEC) was investigated in vitro and enhanced endothelialization was characterized by the introduction of cell adhesive peptides, GRGDS and YIGSR, and PEG spacer. Therefore, GRGDS and YIGSR co-immobilized PU surfaces can be applied to an EC-specific vascular graft with long-term patency by endothelialization.

Improved Biocompatibility of Intra-Arterial Poly-L-Lactic Acid Stent by Tantalum Ion Implantation : 3-Month Results in a Swine Model

  • Kim, Kangmin;Park, Suhyung;Park, Jeong Hwan;Cho, Won-Sang;Kim, Hyoun-Ee;Lee, Sung-Mi;Kim, Jeong Eun;Kang, Hyun-Seung;Jang, Tae-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.853-863
    • /
    • 2021
  • Objective : Biodegradable poly-L-lactic acid (PLLA) with a highly biocompatible surface via tantalum (Ta) ion implantation can be an innovative solution for the problems associated with current biodegradable stents. The purpose of this study is to develop a Taimplanted PLLA stent for clinical use and to investigate its biological performance capabilities. Methods : A series of in vitro and in vivo tests were used to assess the biological performance of bare and Ta-implanted PLLA stents. The re-endothelialization ability and thrombogenicity were examined through in vitro endothelial cell and platelet adhesion tests. An in vivo swine model was used to evaluate the effects of Ta ion implantation on subacute restenosis and thrombosis. Angiographic and histologic evaluations were conducted at one, two and three months post-treatment. Results : The Ta-implanted PLLA stent was successfully fabricated, exhibiting a smooth surface morphology and modified layer integration. After Ta ion implantation, the surface properties were more favorable for rapid endothelialization and for less platelet attachment compared to the bare PLLA stent. In an in vivo animal test, follow-up angiography showed no evidence of in-stent stenosis in either group. In a microscopic histologic examination, luminal thrombus formation was significantly suppressed in the Ta-implanted PLLA stent group according to the 2-month follow-up assessment (21.2% vs. 63.9%, p=0.005). Cells positive for CD 68, a marker for the monocyte lineage, were less frequently identified around the Ta-implanted PLLA stent in the 1-month follow-up assessments. Conclusion : The use of a Ta-implanted PLLA stent appears to promote re-endothelialization and anti-thrombogenicity.

Endothelial Cell Seeding Onto the Extracellular Matrix of Fibroblasts for the Developement of Small Diameter Polyurethane Vessel (소구경 폴리우레탄 인공혈관의 개발을 위한 세포외기질위의 혈관내피세포 배양)

  • 박동국;이윤신
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • A variety of experiments of endothelial cell seeding onto artificial vessels have been performed. To improve endothelialization, one or two components of the extracellular matrix (ECM) have been used as an underlying matrix. In this study, the whole ECM excreted from fibroblasts was used as an underlying matrix. Fetal human fibroblasts were cultured on a polyurethane (PU) sheet. After a conflu; ence was attained, the cytoskeleton and the nuclei of the fibroblast were destroyed using Triton-X. Mitomycin, or irradiation. Omental microvascular endothelial cells from adult human were seeded onto various substrates. After 12 days in culture, the cells were counted. It was observed that the ECM treated by irradiation had the highest cell number. In addition, the cells on this substrate exhibited the most typical endothelial cell morphology. For preliminary animal experiments the PU vessels (inner diameter, 1.5mm) coated with ECM were implanted in the infrarena] abdominal aorta of rat. After the vessels had been implanted for 5 weeks, it was found that the surface of the PU vessels was completely covered with endothelia] cells. In conclusion, we can state that the fibroblast-derived whole ECM makes a better underlying substrate for the endothelialization of small diameter artificial vessels.

  • PDF

Physiological Function of Endothelial Cells Cultured on Polyurethsne Coated by ECM (인조혈관재료 표면에 도포된 혈관내피세포의 생리적 변화에 관한 연구)

  • 이윤신;김용배
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.255-262
    • /
    • 1996
  • Antithrombogenic surFace is one of the most important things to the artificial vascular prostheses. This problem will be solved if the surface of prosthesis is covered with endothelial cells. The attachment and the growth of endothelial cells onto vascular prosthesis are very difficult. So many studies have been concentrated on the attachement of endothelial cell. But no good performance of the in uiwo experiments has been shown until now. In this study, we used the whole extracellular matrix (ECM) excreted from fibroblasts as an underlying matrix, and the endothelial cells were seeded to obtain the long term patency of vascular graft(i.e., for the patent 8 week implanted wafts in the animal model of rat). In order to study the antithrombogenic functions of cultured endothelial cells, prostaglandin(PGF 1 a) synthesis and platelet adhesion were assayed. The concentration of PGF a of stimulated group was sisnificantly higher than that of control group(21.97 $\pm$ 3.45 vs 4.93 $\pm$0.71 pg/1000 cells). The platelet adhesion of the polyurethane sheet covered with endothelial cells was lower than that of polyurethane sheet or sheet covered with ECM(1.04$\pm$0.28, 2.87$\pm$0.77, 2.89$\pm$0.70, % radioactivities, respectively). Endothelial cells grew well on polyurethane coated with ECM, synthesized the prostacyclin and functioned well as antithrombogenic. Therefore the endothelialization onto the ECM excreted from fibroblasts may be a good method for the vfudig prosthesis.

  • PDF

Valvular Failure due to the Laceration of Tissue Valve (조직판막 열상에 의한 판기능부전 -1예 보고-)

  • 정종수
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.893-898
    • /
    • 1988
  • A number of centers have recorded a significant incidence of primary tissue valve failure with the Ionescu-Shiley pericardial valve. Clinically, Endothelialization and host tissue ingrowth on the cloth and the leaflets at the edge of the frame greatly reduced the amounts of abrasion and the incidence of tissue failure. In most cases severe regurgitation was caused by leaflet tears adjacent to the edge of the cloth-covered stent. We report a case of spontaneous disruption of one cusp on the Ionescu-Shiley pericardial xenograft in mitral position at 6years and its successful management.

  • PDF

EXPERIMENTAL STUDIES ABOUT HEALING PROCESS OF BLOOD VESSELS FOLLOWING MICROVASCULAR ANNASTOMOSES (미세혈관문합 후 혈관내벽의 치유과정에 관한 실험적 연구)

  • Choi, Sung-Weon;Kim, Sung-Moon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.4
    • /
    • pp.397-418
    • /
    • 1994
  • Microvascular surgery has been widely used in the clinical field of replantation and reconstructive surgery. Since the last 20 years, microsurgical techniques and instruments have been rapidly developed and the success rate is remarkably increased. But thrombotic occlusion of vessels remains the major reason for clinical failure. The change of vessel wall is the most important factor in thrombus formation. If we can reduce the traumatic changes in the vessel walls during surgery, the success rate can be markedly increased. For this study, femoral arteries and veins of 36 Sprague-Dawley rats with average weights of 300gm were used. The author observed the histological changes and healing process in the anastomostic site after 1 hour, 24 hours, 1, 2, 3 and 4 weeks under light microscopy and scanning electron microscopy. The results were as follows : 1. The patency rate was 100% in femoral arteries and 85% in femoral vein. 2. At the early stages after microvascular anastomosis, the loss of endothelial cell in the vessel walls was observed in the wide area including anastomotic site. In scanning electron microscopic finding the anastomotic site was covered with much fibrin, many red blood cells and some platelets. 3. At 1st week, new endothelial cells were formed toward anastomotic site and at 3rd week, the anastomotic site was completely covered by new endothelial cells. At 4th week, the complete endothelialization over the threads was observed. 4. The media extended from the anastomotic site toward the end of the specimen. At later stages, the extent of media necrosis was markedly decreased. But the media necrosis of anastomotic site was not regenerated till 4th week. 5. Intimal hyperplasia appeared at 1st week and increased till 4th week. The layer consisted of endothelialization the most luminal layers and smooth muscle in the deeper layers. But in veins, the response was less pronounced than in arteries. 6. Foreign body granuloma remained during 4 weeks and aneurysm was observed at 3rd week in artery. In aneurismal wall, media necrosis, loss of elastic lamina and intimal hyperplasia were seen.

  • PDF

Comparison between Basic and Inverse Dual Drug and Peptide-coated Stents in a Porcine Restenosis Model

  • Jang, Eun-Jae;Lee, So-Youn;Bae, In-Ho;Park, Dae Sung;Jeong, Myung Ho;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.502-508
    • /
    • 2020
  • Dual drug-eluting stents (DES) is a primary treatment method for coronary arterial diseases in current interventional cardiology practice. However, their pathological results according to the sequence of coating of drugs have not been reported yet. The peptide-dopamine dissolved in acetonitrile was coated onto the Chonnam National University Hospital (CNUH) stent using an electrospinning coating machine. For secondary coating (e.g., sirolimus coating, designated as SPS), sirolimus (SRL) and poly lactic-glycolic acid (PLGA) were mixed in tetrahydrofuran (THF), and the solution was then coated on the CNUH stent that had underwent the primary peptide coating using an electrospinning and spray technique. Next, the peptide-dopamine was coated on the SRL-PLGA coated stent (PSS). In this study, it was confirmed that endothelialization was promoted without being significantly affected by the coating order (SPS or PSS). The sequence of drug and peptide coating may affect the development of restenosis and PSS was effective in the prevention of restenosis compared to that of using SPS.

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

Novel Noncrossing Y-Stent Technique Using Tapered Proximal End of a Solitaire AB Stent for Coil Embolization of Wide-Neck Bifurcation Aneurysms

  • Kwon, Hyon-Jo;Lim, Jeong-Wook;Byoun, Hyoung Soo;Koh, Hyeon-Song
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.136-141
    • /
    • 2021
  • The crossing Y-stent method is one of the indispensable techniques to achieve sufficient neck coverage during coil embolization of bifurcation aneurysms with a wide neck and/or branch incorporation. However, the inevitable hourglass-like expansion of the second stent at the crossing point can result in insufficient vessel wall apposition, reduced aneurysm neck coverage, delayed endothelialization, and subsequent higher risks of acute or delayed thrombosis. It also interferes with engagement of the microcatheter into the aneurysm after stent installation. We expected to be able to reduce these disadvantages by installing a noncrossing type Y-stent using the Solitaire AB stent, which is fully retrievable with a tapered proximal end. Here we report the techniques and two successful cases.

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.