• Title/Summary/Keyword: Endothelial function

Search Result 250, Processing Time 0.025 seconds

Phamacopuncture and Dermal Application of Sebalgukhwa-san: Effects on Hair Growth in a Mouse Model of Alopecia

  • Ji, Min Jung;Lim, Seong Chul;Kim, Jae Soo;Lee, Hyun Jong;Lee, Yun Kyu
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.92-99
    • /
    • 2019
  • Background: This study was conducted to evaluate the effects of pharmacopuncture and dermal application of Sebalgukhwa-san extracts on hair growth in an alopecia mouse model. Methods: Twenty-one C57BL/6 mice were divided into 3 groups; control group-normal saline injection or vehicle solution application, positive control group-minoxidil (MNXD), experimental group-pharmacopuncture and applied Sebalgukhwa-san (SGS) extract. The effects of the treatment on hair growth, were determined through photographs, and phototrichogram analysis by folliscope. Hair follicle morphometry by hematoxylin-eosin staining was performed, and hair growth-related protein expression of vascular endothelial growth factor, insulin like growth factor-1, and transforming growth factor-beta 1 were monitored by Western blotting. Serum levels of aspartate aminotransferase and alanine aminotransferase were measured for liver function test. Results: Body weight increased consistently in all groups. Hair growth was improved in the MNXD and SGS groups compared with the control. Hair density and thickness improved statistically significantly in the MNXD and SGS groups compared with the control p < 0.05. The number of hair follicles improved in the MNXD and SGS groups compared with the control but the size did not. The expression of vascular endothelial growth factor and insulin like growth factor-1 increased, and there was a decrease in the expression of transforming growth factor-beta 1 in the MNXD and SGS groups compared with the control, however, there was no significant difference. Sebalgukhwa-san treatment had no toxicity in liver function tests. Conclusion: Pharmacopuncture and dermal application of Sebalgukhwa-san extract may be therapeutically beneficial for the treatment of alopecia.

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

Inhibitory effects of new quinone compounds on eNOS activity in rat aorta and nNOS activity in rat brain

  • Yoo, So-Yeon;Seo, Ji-Hui;Ryu, Chung-Kyu;Kim, Hwa-Jung
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.248.3-249
    • /
    • 2002
  • Nitric oxide (NO) has been shown to play an important role in the regulation of vascular tone. platelet function. neurotransmission. and immune function. NO is synthesized from the L-arginine by NO synthase (NOS). Three distinct isoforms of NOS have been identified: calcium/calmodulin-dependent endothelial (eNOS) and neuronal (nNOS) isoforms which are constitutive and produce small quantities of NO, and an inducible isoform (iNOS) which is markedly induced in response to lipopolysaccharide (LPS) or inflammatory cytokines. (omitted)

  • PDF

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System

  • Kim, Seunghee;Lee, Minjae;Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.

Nitric Oxide Signal Transduction and Its Role in Skin Sensitization

  • Jong Hun Kim;Min Sik Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.388-394
    • /
    • 2023
  • Nitric oxide (NO) is a signaling molecule that plays a crucial role in numerous cellular physiological processes. In the skin, NO is produced by keratinocytes, fibroblasts, endothelial cells, and immune cells and is involved in skin functions such as vasodilation, pigmentation, hair growth, wound healing, and immune responses. NO modulates both innate and adaptive immune responses. As a signaling molecule and cytotoxic effector, NO influences the function of immune cells and production of cytokines. NO is a key mediator that protects against or contributes to skin inflammation. Moreover, NO has been implicated in skin sensitization, a process underlying contact dermatitis. It modulates the function of dendritic cells and T cells, thereby affecting the immune response to allergens. NO also plays a role in contact dermatitis by inducing inflammation and tissue damage. NO-related chemicals, such as nitrofatty acids and nitric oxide synthase (NOS) inhibitors, have potential therapeutic applications in skin conditions, including allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). Further research is required to fully elucidate the therapeutic potential of NO-related chemicals and develop personalized treatment strategies for skin conditions.

The Molecular Functions of RalBP1 in Lung Cancer

  • Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • RalBP1 is an ATP-dependent non-ABC transporter, responsible for the major transport function in many cells including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RalBP1 is expressed in most human tissues, and is over-expressed in non-small cell lung cancer cell lines and in many other tumor types. Blockade of RalBP1 by various approaches has been shown to increase sensitivity to radiation and chemotherapeutic drugs, leading to cell apoptosis. In xenograft tumor models in mice, RalBP1 blockade or depletion results in complete and sustained regression across many cancer cell types including lung cancer cells. In addition to its transport function, RalBP1 has many other cellular and physiological functions, based on its domain structure which includes a unique Ral-binding domain and a RhoGAP catalytic domain, as well as docking sites for multiple signaling proteins. Additionally, RalBP1 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. In this review, we discuss the cellular and physiological functions of RalBP1 in normal and lung cancer cells.

RalA-binding Protein 1 is an Important Regulator of Tumor Angiogenesis (Tumor angiogenesis에 있어서 RLIP76의 중요성)

  • Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Tumor angiogenesis is important in tumorigenesis and therapeutic interventions in cancer. To know inhibitor and effector of tumor angiogenesis in cancer, the specific gene of tumor and angiogenesis may develop the mechanisms of cancer suppression and therapy. Recently, we described the role of RalA-binding protein 1 (RLIP76) in tumor angiogenesis. Tumor vascular volumes were diminished, and vessels were fewer in number, shorter, and narrower in RLIP76 knockout mice than in wild-type mice. Moreover, angiogenesis in basement membrane matrix plugs was blunted in the knockout mice in the absence of tumor cells, with endothelial cells isolated from the lungs of these animals exhibiting defects in migration, proliferation, and cord formation in vitro. RLIP76 is expressed in most human tissues and is overexpressed in many tumor types. In addition, the protein regulates tumorigenesis and angiogenesis in vivo and in vitro. As the export of chemotherapy agents is a prominent cellular function of RLIP76, it is a major factor in mechanisms of drug resistance. Moreover, RLIP76 acts as a selective effector of the small GTPase, R-Ras, and regulates R-Ras signaling, leading to cell spreading and migration. Furthermore, in skin carcinogenesis, RLIP76 knockout mice are resistant, with tumors that form showing diminished angiogenesis. Thus, RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.

The fruit of Acanthopanax senticosus Harms improves arterial stiffness and blood pressure: a randomized, placebo-controlled trial

  • Oh, Eunkyoung;Kim, Youjin;Park, Soo-yeon;Lim, Yeni;Shin, Ji-yoon;Kim, Ji Yeon;Kim, Ji-Hyun;Rhee, Moo-Yong;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.322-333
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Arterial stiffness and endothelial dysfunction are 2 of the independent predictors for cardiovascular disease, while Acanthopanax senticosus Harms (ASH) is a traditional medicinal plant that can improve cardiovascular health. This study aimed to investigate the efficacy of the fruit of ASH on vascular function in apparently healthy subjects. SUBJECTS/METHODS: A 12-week, randomized, double-blind, placebo-controlled design, consisting of healthy adults with at least 2 of the following 3 conditions: borderline high blood pressure (BP; 120 mmHg ≤ systolic BP ≤ 160 mmHg or 80 mmHg ≤ diastolic BP ≤ 100 mmHg), smoking (≥10 cigarettes/day), and borderline blood lipid levels (220 ≤ total cholesterol ≤ 240, 130 ≤ low density lipoprotein cholesterol ≤ 165, or 150 ≤ triglyceride ≤ 220 mg/dL). Randomly assigned 76 subjects who received a placebo or 2 doses of ASH fruit (low, 500 mg/day; high, 1,000 mg/day) completed the intervention. Brachial-ankle pulse wave velocity (baPWV), flow-mediated dilation, carotid intima-media thickness, and BP were measured both at baseline and following the 12-week intervention. Endothelial nitric oxide synthase (eNOS) phosphorylation was assessed by western blotting. RESULTS: Compared with the placebo group, the low-dose group showed more significant changes after the 12-week intervention period in terms of systolic BP (0.1 vs. -7.7 mmHg; P = 0.044), baPWV (31.3 vs. -98.7 cm/s; P = 0.007), and the ratio of phospho-eNOS/eNOS (0.8 vs. 1.22; P = 0.037). CONCLUSIONS: These results suggest that ASH fruit extract at 500 mg/day has the potential to improve BP and arterial stiffness via endothelial eNOS activation in healthy adults with smoking and the tendency of having elevated BP or blood lipid parameters.

The bimodal regulation of vascular function by superoxide anion: role of endothelium

  • Demirci, Buket;McKeown, Pascal P.;Bayraktutan DVM, Ulvi
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.223-229
    • /
    • 2008
  • Reactive oxygen species (ROS) are implicated in vascular homeostasis. This study investigated whether ${O_2}^{\cdot^-}$, the foundation molecule of all ROS, regulates vasomotor function. Hence, vascular reactivity was measured using rat thoracic aortas exposed to an ${O_2}^{\cdot^-}$ generator (pyrogallol) which dose-dependently regulated both $\alpha$-adrenergic agonist-mediated contractility to phenylephrine and endothelium-dependent relaxations to acetylcholine. Pyrogallol improved and attenuated responses to acetylcholine at its lower (10 nM - 1 ${\mu}M$) and higher (10 - 100 ${\mu}M$) concentrations, respectively while producing the inverse effects with phenylephrine. The endothelial inactivation by L-NAME abolished acetylcholine-induced vasodilatations but increased phenylephrine and KCl-induced vasoconstrictions regardless of the pyrogallol dose used. Relaxant responses to sodium nitroprusside, a nitric oxide donor, were not affected by pyrogallol. Other ROS i.e. peroxynitrite and $H_2O_2$ that may be produced during experiments did not alter vascular functions. These findings suggest that the nature of ${O_2}^{\cdot^-}$-evoked vascular function is determined by its local concentration and the presence of a functional endothelium.

Development of Biocompatible Vascular Graft -Endothelialization of Small Vascular Graft- (생체적합성 인조혈관의 개발 -혈관내피화 인조혈관-)

  • 김형묵;이윤신
    • Journal of Chest Surgery
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 1996
  • Prevention of thromboembolism is the most important task in the development of bioconpatible small caliber artificial vascular graft. In normal vessels, vascular endothelial cells maintain homeosatsis by secreting numerous factors. The aim of this study is to develope a method which Improves biocompatibility of small caliver polyurethane graft using endothelial cell culture technique, and ev luate the efTectiveness of extracelluar matrix for endothelization which was produced by cultured fibroblast. Methods ; Multiporous polyurethane tube of 3 mm diameter, 0.3 mm thickness was manufactured for vascular graft. Three mongrel dogs were intubated and internal jugular veins removed. Extracelluar matrix produced by cultured flbrobast which was obtained from dog's internal jugular vein were coated to the polyurethane graft. Then, endothelial cells extracted from Jugular vein were cultured and fixed on the extracelluar matrix layer of vascular graft. Endothelial cell coated vascular grafts were implanted to the carotid arteries of experimental dogs as interposed autograft. Implanted grafts were removed after 3 and 6 weeks. As a control, PTFE graft was interposed on carotid artery. These experiments demonstrated that extracelluar matrix produced by fibroblast can afford a base for endothelial cell linings of polyurethane graft. Although thrombosis were developed on autografted en othelial cell coated graft, 33% opening was noticed, and showed less adhesion to adjacent tissue layer. These findings suggest that fiboblast produced extracelluar matrix which can be used for edothelial cell lining vascular graft, and by improving the cultured endothelial cell function, there will be a new modality for reducing thrombosis on small vascular graft.

  • PDF