• Title/Summary/Keyword: Endothelial apoptosis

Search Result 138, Processing Time 0.031 seconds

Protective Effects of Sanyakbojungbangam-tang Ethanol Extracts on Cisplatin-induced Apoptosis in ECV304 Cells (혈관내피세포에서 cisplatin에 의한 세포고사에 대한 산약보정방암탕 에탄을 추출물의 방어효과)

  • Kwon Kang-Beom;Kim Eun-Kyung;Lee Young-Rae;Ju Sung-Min;Ryu Do-Gon;Kim Sung-Hoon;Jeon Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • This study was designed to investigate the protective effect of Sanyakbojungbangam-tang Ethanol Extracts (SB Et-OH) on the cisplatin-induced apoptosis of human endothelial cell line ECV304 cells. After cells were treated with cisplatin, MTT assay was performed for cell viability test. To explore the mechanism of cytotoxicity, we used the several measures of apoptosis to determine whether this processes was involved in cisplatin-induced cell damage in ECV304 cells. Also, cells were treated with SB Et-OH and then, followed by the addition of cisplatin. Cisplatin decreased the viability of ECV304 cells in a dose-dependent manner and increased the caspase-3 enzyme activity ECV304 cells treated cisplatin were revealed as apoptosis characterized by nuclear staining. SB Et-OH protected ECV304 cells from cisplatin-induced nuclear fragmentation and chromatin condensation. Also, SB Et-OH inhibited the activation of caspase-3 pretense and the cleavage of poly(ADP-ribose) polymerase (PARP) in cisplatin-treated ECV304 cells. According to above results, SB Et-OH may protect ECV304 cells from the apoptosis induced by cisplatin.

Cytoprotective Effects of Radix Curcumae Aromaticae in Human Umbilical Vein Endothelial Cells (울금에 의한 혈관내피세포 보호 효과에 대한 연구)

  • Seo Eun A;Chung Hun Taeg;Ko Kwang Hak;Kwon Kang Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1805-1809
    • /
    • 2004
  • In order to validate the use of Radix Curcumae Aromaticae as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effect of water-soluble extract of Radix Curcumae Aromaticae (ECA) on the expression of inducible heme oxygenase-1 (HO-1), which ha.s anti-inflammatory and cytoprotective effects stimulates, in human umbilical vein endothelial cells (HUVECs) stimulated with a high dose of pro-inflammatory tumor necrosis factor-alpha (TNF-α). The extract protected dose-dependently HUVECs against TNF-α-induced apoptosis, as measured qualitatively by a nuclear staining method using the fluoresoence DAPI and quantitatively by a flow cytometry using fluoresce-enhanced Annexin V antibody, and significantly Increased HO-1 expression, as determined by Western blotting analysis using anti-HO-1 antibody. Biockage of HO-1 activity by a pharmacological inhibitor reversed cytoprotection afforded by the extract, and treatment with carbon monoxide, one of HO-1 metabolites, resulted in cytoprotection comparable to the extract. These results suggest that ECA may have therapeutic potential in the control of endothelial disorders caused by inflammatory cytokines.

Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

  • Seo, Youngsik;Cho, Young-Sik;Huh, Young-Duk;Park, Heonyong
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.195-203
    • /
    • 2016
  • Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions ($Cu^+$ and $Cu^{2+}$), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped $Cu_2O$ and CuO crystals were prepared to test the role of the two different ions, $Cu^+$ and $Cu^{2+}$, respectively. The $Cu_2O$ crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The $Cu_2O$ crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. $Cu_2O$ crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit $Cu_2O$-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of $Cu^+$ ions in the vascular system, where $Cu^+$ induces autophagy while $Cu^{2+}$ has no detected effect.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Tivozanib-induced activation of the mitochondrial apoptotic pathway and suppression of epithelial-to-mesenchymal transition in oral squamous cell carcinoma

  • Nak-Eun Choi;Si-Chan Park;In-Ryoung Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.197-207
    • /
    • 2024
  • The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.

A Novel Anti-cancer Agent, SJ-8029, Inhibits Angiogenesis and Induces Apoptosis

  • Yi Eui-Yeun;Jeong Eun-Joo;Song Hyun-Seok;Kang Dong-Wook;Joo Jeong-Ho;Kwon Ho-Seok;Lee Sun-Hwan;Park Si-Kyung;Chung Sun-Gan;Cho Eui-Hwan;Kim Yung-Jin
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.161-170
    • /
    • 2006
  • A new piperazine derivative, 8J-8029, is a synthetic anti-cancer agent which exhibits both microtubule and topoisomerase II inhibiting activities. In this study, we investigated the ability of 8J-8029 for anti-angiogenesis and apoptosis. 8J-8029 decreased the bFGF-induced angiogenesis in the CAM and the mouse Matrigel implants, in vivo. 8J-8029 inhibited the proliferation, migration, invasion, tube fonnation, and expression of MMP-2 in BAECs. In addition, 8J-8029 reduced the cell viability in HepG2 cells, caused the production of fragmented DNA and the morphological changes corresponding to apoptosis. 8J-8029 also elicited the release of cytochrome c and the activation of caspase-3. Taken together, these results suggest 8J-8029 may be a candidate for anti-cancer agent with the ability to inhibit the angiogenesis of endothelial cells and to induce the apoptosis of tumor cells.

  • PDF

Inhibition of Apoptosis by Nitric Oxide in MCF-7 Cells (유방암 세포(MCF-7)에서 nitric oxide에 의한 apoptosis 억제)

  • Kim, Kyun-Ha;Roh, Sang-Geun;Park, Hae-Ryun;Choi, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.157-162
    • /
    • 2009
  • Nitric oxide (NO) is a diffusible, multifunctional and transcellular messenger that has been implicated in numerous physiological and pathological conditions. It has been reported that NO induced apoptosis in tumor cells, macrophage cells and inhibited apoptosis in normal cells, endothelial cells. To examine whether NO could induce apoptosis in MCF-7 cells, cells were treated with SIN-1 (3-morpholinosydnonimine), NO donor. Cell viability did not change in SIN-1 treated cells for 48 h and there was no significantly changes in cell cycle progression or growth pattern by FACS analysis. But p53 protein, an apoptosis-related factor, increased SIN-1 treatment time dependently. Bcl-2, MDM2 and p21 were also accumulated. Bax level did not change. A major role of inhibiting apoptosis by NO in MCF-7 cells, cobalt chloride ($CoCl_2$) was added to cells preincubated with SIN-1. Whereas $CoCl_2$ treated cells underwent apoptosis, for 24 h SIN-1 preincubated cells were not induced apoptosis. Inactivated proteins, MDM2 and bcl-2, by $CoCl_2$ levels also increased in SIN-1 pre-treated cells. These results suggested that SIN-1 blocked p53 by MDM2 activation and inhibited apoptosis by inducing p21 and bcl-2 expression.

Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice

  • Jin, Haiming;Zhang, Zengjie;Wang, Chengui;Tang, Qian;Wang, Jianle;Bai, Xueqin;Wang, Qingqing;Nisar, Majid;Tian, Naifeng;Wang, Quan;Mao, Cong;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.13.1-13.15
    • /
    • 2018
  • Wound healing is delayed in diabetic patients. Increased apoptosis and endothelial progenitor cell (EPC) dysfunction are implicated in delayed diabetic wound healing. Melatonin, a major secretory product of the pineal gland, promotes diabetic wound healing; however, its mechanism of action remains unclear. Here, EPCs were isolated from the bone marrow of mice. Treatment of EPCs with melatonin alleviated advanced glycation end product (AGE)-induced apoptosis and cellular dysfunction. We further examined autophagy flux after melatonin treatment and found increased light chain 3 (LC3) and p62 protein levels in AGE-treated EPCs. However, lysosome-associated membrane protein 2 expression was decreased, indicating that autophagy flux was impaired in EPCs treated with AGEs. We then evaluated autophagy flux after melatonin treatment and found that melatonin increased the LC3 levels, but attenuated the accumulation of p62, suggesting a stimulatory effect of melatonin on autophagy flux. Blockage of autophagy flux by chloroquine partially abolished the protective effects of melatonin, indicating that autophagy flux is involved in the protective effects of melatonin. Furthermore, we found that the AMPK/mTOR signaling pathway is involved in autophagy flux stimulation by melatonin. An in vivo study also illustrated that melatonin treatment ameliorated impaired wound healing in a streptozotocin-induced diabetic wound healing model. Thus, our study shows that melatonin protects EPCs against apoptosis and dysfunction via autophagy flux stimulation and ameliorates impaired wound healing in vivo, providing insight into its mechanism of action in diabetic wound healing.

$H_2O_2$ Induces Apoptosis in Calf Pulmonary Artery Endothelial Cells (폐동맥내피 세포에서 $H_2O_2$에 의한 세포자사)

  • 김범식;정주호
    • Journal of Chest Surgery
    • /
    • v.33 no.12
    • /
    • pp.935-940
    • /
    • 2000
  • 배경: 폐혈관 손상에 관한 기전은 여러 보고에도 불구하고 자세히 밝혀지지는 않았다. 최근 산화성 스트레스 질환에 관여하는 과산화 수소($H_2O$$_2$) 등의 활성 산소족(reactive oxygen species)은 세포손상과 세포자사(apoptosis)에 중요한 역할을 한다고 알려져 있다. 본 연구에서는 $H_2O$$_2$에 의하여 유발된 산화성 스트레스가, 폐혈관 손상 기전의 하나로 추측되고 있는 세포자사를 야기하는지를 연구하였다. 대상 및 방법: 소의 폐동맥에서 유래된 calf pupmonary artery endothelial cell line(CPAE)를 이용하였다. $H_2O$$_2$에 의한 세포 독성을 측정하기 위하여, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide(MTT) assay를 시행하였다. $H_2O$$_2$에 의한 세포의 형태학적 변화는 도립 현미경으로 분석하였다. 세포자사를 확인하기 위하여 terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay와 4,6-diamidino-2-phenylindole(DAPI) staining 방법 및 flow cytometry 분석를 시행하였다. 결과: $H_2O$$_2$에 의한 세포 생존율은, 대조군(100%)과 비교하여 3시간 실험군에서 10$\mu$M에서 약 70%, 50 $\mu$M에서 약 33%, 100 $\mu$M에서 약 26%, 500 $\mu$M에서 약 28%이였다. $H_2O$$_2$투여시 세포돌기 감소, 세포 축소, 세포질 응축과 불규칙한 형태 등의 세포자사에 나타나는 형태학적 변화를 나타내었다. TUNEL assay와 DAPI staining에서도 세포자사에 특징적으로 나타나는 핵응축과 핵분절 등의 소견을 나타내었다. Flow cytometry 분석 시에도 $H_2O$$_2$투여시 sub G$_1$분절의 증가와 G$_1$분절의 감소 등의 세포자사 양상이 확인되었다. 결론: 형태학적 분석과 생화학적 분석을 통하여, $H_2O$$_2$는 CPAE에서 세포자사를 야기함을 확인하였다. 이러한 결과는 폐혈관 손상의 기전에 $H_2O$$_2$에 의한 세포자사가 부분적으로 관여할 가능성을 제시한다.

  • PDF