• Title/Summary/Keyword: Endogenous clock

Search Result 20, Processing Time 0.024 seconds

A Time to Fast, a Time to Feast: The Crosstalk between Metabolism and the Circadian Clock

  • Kovac, Judit;Husse, Jana;Oster, Henrik
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement

  • Kim, Jeong-Sik;Nam, Hong-Gil
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.5.1-5.4
    • /
    • 2009
  • This article is an addendum to the authors’ previous article (Kim, J. et al. (2008) Plant Cell 20, 307-319). The instrumentation and software described in this article were used to analyze the circadian leaf movement in the previous article. Here, we provide detailed and practical information on the instrumentation and the software. The source code of the LMA program is freely available from the authors. The circadian clock regulates a wide range of cyclic physiological responses with a 24 hour period in most organisms. Rhythmic leaf movement in plants is a typical robust manifestation of rhythms controlled by the circadian clock and has been used to monitor endogenous circadian clock activity. Here, we introduce a relatively easy, inexpensive, and simple approach for measuring leaf movement circadian rhythms using a USB-based web camera, public domain software and a Leaf Movement Assay (LMA) program. The LMA program is a semi-automated tool that enables the user to measure leaf lengths of individual Arabidopsis seedlings from a set of time-series images and generates a wave-form output for leaf rhythm. This is a useful and convenient tool for monitoring the status of a plant's circadian clock without an expensive commercial instrumentation and software.

Identification of a PAS Domain-containing Protein in a Mammalian Hibernator, Murina leucogaster

  • Cho, Sang-Gil;Kim, Dong-Yong;Eom, Ki-Hyuk;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • Mammalian hibernation is a type of natural adaptation that allows organisms to avoid harsh environment and to increase the possibility of survival. To investigate the molecular link between circadian and hibernating rhythms in the greater tube-nosed bats, Murina leucogaster, we set out to identify circadian genes that are expressed in bats, with specific focus on the PAS domain by using PCR-based screens. We could isolate a eDNA clone, designated as LPAS1, that encodes a protein of 521 amino acid residues. LPAS1 is closely related with CLOCK family with the highest homology to human CLOCK. Based on RT-PCR analyses, LPAS1 transcripts are ubiquitously present in tissues from both summer active and winter dormant periods. Given that LPAS1 is a member of the bHLH-PAS protein superfamily but lacks polyglutamine transactivation domains, it is likely to function as a repressor for endogenous CLOCK to hinder its roles in promoting transcription. Our result will open a new avenue to further examine the functional interconnection between the circadian clock and the circannual clock such as mammalian hibernation.

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock

  • Lee, Jiwon;Park, Eonyoung;Kim, Ga Hye;Kwon, Ilmin;Kim, Kyungjin
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.6.1-6.10
    • /
    • 2018
  • Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.

Diurnal Variation in Endogenous Gibberellin Levels of Rice Shoots

  • Hwang, Sun-Joo;Hamayun, Muhammad;Kim, Ho-Youn;Kim, Kil-Ung;Shin, Dong-Hyun;Kim, Jang-Eok;Kim, Sang-Yeol;Lee, In-Jung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.163-166
    • /
    • 2007
  • Diurnal changes in levels of endogenous gibberellins(GAs) were investigated in three rice cultivars i.e. Sangjubyeo, Shingeumobyeo(photo-neutral) and Chucheongbyeo(photosensitive). The rice cultivars were grown under a 12-hr photoperiod and endogenous GA levels were assayed by gas chromatography-mass spectrometry(GC-MS-SIM) every 3 h for 24 h. The endogenous bioactive $GA_1$ and its immediate precursor $GA_{20}$ contents were significantly different in both photosensitive and photo-neutral rice cultivars, though less pronounced differences were observed for endogenous $GA_{12},\;GA_{53},\;GA_{19}$, and $GA_8$ levels with in the three rice cultivars. The levels of bioactive $GA_1$ and its immediate precursor $GA_{20}$ were significantly higher in Chucheongbyeo than in the other two cultivars. In Chucheongbyeo, the $GA_1$ contents increased significantly from 11.00 to 17.00 o'clock, thus indicating a correlation with light. In Shingeumobyeo, $GA_1$ contents slightly increased during morning hours, while a similar hike in $GA_1$ contents was observed for Sangjubyeo during evening hours. $GA_{19}$ was found to be the most abundant GA form in the three rice cultivars. Our results suggested that GA production in rice depends upon the response potential of rice cultivars and that light positively correlated to GA production in photosensitive rice cultivar.

  • PDF

PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

  • Choi, Hyunmo;Oh, Eunkyoo
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.587-593
    • /
    • 2016
  • As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.

Possible involvement of temperature-entrainable timing system in arrhythmic mutant flies in Drosophila melanogaster

  • Yoshii, Taishi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.240-242
    • /
    • 2002
  • In Drosophila melanogaster, it is known that the circadian clock consists of an autoregulatory feedback loop, which includes so-called clock genes, such as per, tim, dClk and cyc and produces periodical expression of per. It is recently suggested, however, that the circadian oscillation without the rhythmical expression of per is involved in the regulation of circadian locomotor rhythms. In the present study, we examined the existence and the property of the possible per-less oscillation using arrhythmic clock mutant flies carrying per$^{01}$, tim$^{01}$, dClk$^{Jrk}$ or cyc$^{01}$. When temperature cycles consisting of 25$^{\circ}$C and 30$^{\circ}$C with varying periods (T = 8~32 hr) were given, they showed rhythms synchronizing with the given cycle under constant darkness (DD). per$^{01}$ and tim$^{01}$ flies always showed a peak around 7 hr after the onset of thermophase irrespective of Ts of temperature cycles, while dClk$^{Jrk}$ and cyc$^{01}$ flies did not. In addition, several days were necessary to establish a clear temperature entrainment in per$^{01}$ and tim$^{01}$ flies, when they were transferred from a constant temperature to a temperature cycle under DD. These results suggest that per$^{01}$ and tim$^{01}$ flies have a temperature-entrainable weak oscillatory mechanism. The fact that dClk$^{Jrk}$ and cyc$^{01}$ flies did not show any sign of the endogenous oscillation suggests that the per-less oscillatory mechanism may require CLK and CYC.

  • PDF

A Novel Phototransduction Pathway in the Pineal Gland and Retina

  • Okano, Toshiyuki;Kasahara, Takaoki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.246-248
    • /
    • 2002
  • Light is a major environmental signal for entrainment of the circadian clock, but little is known about the phototransduction pathway triggered by light-activation of photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they provide useful experimental model for the clock system. We previously demonstrated the expression and light-dependent activation of rod-type transducin $\alpha$-subunit (Gtl$\alpha$) in the chicken pineal gland. It is unlikely, however, that the pineal Gt$_1$$\alpha$ plays a major role in the photic entrainment, because the light-induced phase shift is unaffected by bloking the signaling function of Gt$_1$$\alpha$. Here, we show the expression of G 11 $\alpha$, an $\alpha$-subunit of another heterotrimeric G-protein, in the chicken pineal gland and retina by cDNA cloning, Northern blot and Western blot analyses. GIl$\alpha$-immunoreactivity was colocalized with pinopsin in the chicken pineal cells and it was found predominantly at the outer segments of photoreceptor cells in the retinal sections, suggesting functional coupling of G11 $\alpha$ with opsins in the both the tissues. By coimmunoprecipitation experiments using the retina, we showed the light- and GTP-dependent interaction between rhodopsin and G11 $\alpha$. Upon ectopic expression of a Gq/ 11-coupled receptor in cultured pineal cells, pharmacological (non-photic) activation of endogenous G11 induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. These results suggested opsin-G11 pathway contributing to the photic entrainment of the circadian clock.

  • PDF

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.