• Title/Summary/Keyword: End-plate

Search Result 646, Processing Time 0.031 seconds

Load-Deformation Relationship of Single Bolted Connections (단일볼트 지압접합부의 힘-변형관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Well designed group bolted connections can exhibit excellent ductile behavior through the bearing mechanism until the occurrence of shear rupture in the bolt or in the connecting plate. This excellent ductility can be utilized in favor of economical connection design. In this study, comprehensive tests on single-bolt bearing connections were conducted and analyzed considering bearing boundary conditions. The primary objective was to propose a generalized bearing strength and load-deformation relationship that can be used for designing group-bolted connections. To this end, new bearing strength formula, deformation limits as well as new load-deformation relationship were first proposed. Especially the proposed load-deformation relationship can reflect the stiffness, strength, and geometrical boundary conditions of the joint. The proposed formula and relationship are validated based on test results.

A Design of Improved 100 GHz Lens Antennas for the ECEI System (ECEI 장치를 위한 향상된 성능의 100 GHz 렌즈 안테나 설계)

  • Lee, Gwan-Hee;Kim, Sung-Kyun;Mohyuddin, Wahab;Choi, Hyun-Chul;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.817-824
    • /
    • 2016
  • In this paper, a modified elliptical lens antenna design is proposed to improve the performance of 100 GHz mini-lens antennas used in the ECEI(Electron Cyclotron Emission Imaging) module at KSTAR. A hemispherical lens is added on the bottom plate of the conventional elliptic lens antenna, and a 100 GHz dipole antenna is located on the end point of the hemispherical lens. Using geometrical optics, antenna radiated EM fields are designed to be totally reflected from the inner surface of the hemispherical lens, and thereby the antenna patterns are more focused toward the main beam. The validity of the proposed design is confirmed by the 3D EM simulator. The modified elliptical lens antenna provides 23.8 dB maximum gain, which is 2.2 dB gain improvement as compared with the conventional elliptic lens. Also, the side love levels of E- and H-planes are decreased by 2.6 dB and 3.4 dB, respectively.

An Estimation of the Fatigue Behavior on the Cruciform Type Specimen by Variation of the Stress Ratio (응력비 변화에 따른 십자형 접합부의 피로거동 평가)

  • 김태봉;서상구;우상익
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.140-145
    • /
    • 2000
  • This paper was composed with fatigue test of the cruciform specimens, as load carrying and non-load carrying type. It also has performed computational analyses for geometric condition of the fillet welding bead. As test results, the effect of stress ratio in the specimen was insignificant. Stress ranges were varied with R=0.1~0.2. The fatigue cracks that were found in the load carrying type specimens and most specimens welded with contact were developed at the end of welds. The fatigue strength of specimen that have fractured in maternal plate was found about ${\Delta}\sigma_c$=63.5MPa. It's about 24% less than that of the non-load carrying type specimens having about ${\Delta}\sigma_c$=83.8MPa. A category of the Fatigue design specifications which provide for cruciform details was defined grade C as a stress of the maternal member. And then, the fatigue strength to be transformed into the maternal stress was found about 78.27 MPa, it tends to be less than that of allowable fatigue strength.

  • PDF

Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member (적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가)

  • Yang, Yong Jun;Kim, Young Nam;Cha, Cheon Seok;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.

Performance Evaluation of Inertial Balance for Measuring Mass in Microgravity (마이크로중력환경에서 사용 가능한 관성저울의 성능평가)

  • Jang, Hyun-Jin;Lee, Joo-Hee;Choi, Jae-Hyuk;Park, Seul-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1395-1401
    • /
    • 2014
  • In an effort to develop and implement an inertial balance with high performance, the response characteristics of a load cell, which are some of the critical parameters for optimal system design, were evaluated using a sample object of approximately 100 g under microgravity conditions. To this end, a 15-m drop-tower was used to produce microgravity conditions, and the response characteristics of the load cell were investigated in terms of the variations in the magnitude of the deceleration of the sample object, noting that the mass of a living animal should be determined in microgravity. An analysis of the ratio of the inertial forces clearly demonstrated that the average velocity of a load cell plate should be higher than 0.5 m/s to meet the design requirements.

Biosynthesis and Interfacial Properties of Sophorolipids As a Biosurfactant (생체계면활성제 소포로리피드의 생합성과 계면 특성)

  • Kang, Chang-Beom;Rhyu, Gyung-Ihm;Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.213-225
    • /
    • 2000
  • Sophorolipids were biosynthesized using a strain of yeast, Torulopsis bombicola ATCC22214. It has been reported that this yeast gives the highest yields for the production of biosurfactant sophorolipids. Hence, this yeast was used in this study. One of the objectives of this study is to increase the yield of the sophorolipid synthesis. To meet this end, basic culture medium was formulated on the basis of literature research to-date. When this medium was used, the increase in yield from 15% to 150% was observed compared to using the media in the literature. To examine how the interfacial characteristics of sophorolipids change with substrate, glucose (the first carbon source) was maintained in the media and after being cultured for three days, the second carbon sources such as alkanes, vegetable oils, alcohols or organic acids were added. The whole broth was extracted twice with ethyl acetate and the extract was analyzed by thin layer chromatograhy(TLC). After qualitative analyses by TLC, surface tensions of sophorolipids were measured by the Wilhelmy plate method and critical micelle concentration(CMC) was determined using these surface tension data. Also, interfacial tensions were measured by the spinning drop method and emulsions of the three-component water/decane/sophorolipid system were tested. Sophorolipids were effective and efficient in terms of surface tension reduction and CMC, but they were ineffective as emulsifiers because emulsions were separated within 30 minutes.

Development of a Prototype Continuous Flow Dryer using For Infrared Ray and Heated -air for White Ginseng (열풍과 원적외선 겸용 연속식 백삼 건조기의 개발)

  • 박승제;김성민;김명호;김철수;이종호
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • This study was performed to develop a prototype continuous flow ginseng dryer with which better product quality and lower drying energy consumption could be achieved compared with conventional ginseng dryers. A dryer having both far infrared ray (IR) and heated-air as the drying energy sources was designed and fabricated . Dryer performance was studied by examining energy efficiencies and dryer performance evaluation indices (DPEI) during the drying tests of medium-sized four year ginseng roots with IR radiating plate temperature and drying air temperature in the range of 80-12$0^{\circ}C$ and 22-5$0^{\circ}C$, respectively. The DPEI of IR /heated -air combined drying was 1/3 of that of the conventional heated-air drying when ginseng were dried to the same final moisture ratio. When ginsengs were dried for 12 hours in the prototype IR/heated-air combination dryer, a linear relationship was found to exist between final moisture ratio and ginseng temperature. As the drying progressed, drying air temperature inside the dryer was nearly constant but ginseng temperature was drastically increased during the first two hours and gradually increased thereafter until the end of drying. With the prototype Ir/heated-air combination dryer, the drying rate changed little but the energy efficiency increased proportionally when the amount of ginseng to be dried increased. Drying capacity, energy efficiency, and DPEI of the prototype IR/heated-air combination ginseng dryer were estimated to 1.500 roots, 65% and 3.800kJ/kg-water , respectively.

  • PDF

Some Considerations on Heat Flow in Korea (한반도(韓半島) 지열류량(地熱流量)에 대(對)한 약천(若千)의 고찰(考察))

  • Sung Kyun, Kim
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 1984
  • The geophysical implications of the observed heat flow in the Korean Peninsula are examined. The Peninsula can be devided into two typical regions of high (Zone 1) and normal heat flows (Zone 2), and anomalous sharp change of heat flow between two zones is noteworthy. Zone 1 (southeastern coast of the Peninsula) to be connected to the East Sea (=Japan Sea) of high heat flow region corresponds with the region of late-Mesozoic to Tertiary igneous activity. With the radioactive elements concentrated in the crust, the observed heat flow in Zone 2 can be almostly explained. While, only a half of the heat flow in Zone 1 is explained. As a possible explanation of high heat flow in Zone 1, partial melting in the lower crust is examined. The temperature of $800-900^{\circ}C$ calculated at the bottom of the crust excludes the possibility of partial melting or magma generation in the crust. Alternatively, a remaining thermal effect of late-Mesozoic to Tertiary igneous activity is considered. However, it appears that the thermal effect already disappeared and that the vertical temperature distribution reached at steady state 30 MY ago (= 10 MY after the igneous activities came to an end). After all, the existence of some other effective heat transfer in Zone 1 is strongly suggested. The high heat flow to be same kind of anomalous one of the East Sea can be recognized as a result of the trench-back-arc thermal flux. The plate subduction in the Japan Trench will generate an induced flow above the slab of the East Sea, a typical back-arc basin, and hence the induced flow will heat the surrounding lithosphere.

  • PDF

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

Stress History Evaluation for Truss Bridge with Local Damages by Using Global-Local Model Combination (전체해석과 국부해석 조합법을 이용한 국부결함이 있는 트러스교 응력이력해석)

  • Kim, Hyo-Jin;Park, Sang-il;Bae, Gi-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • This study predicts the stress history for truss bridge with local damages by using global-local model combination method. For this end, the global structure is modeled by 3D frame elements and the selected local details are modeled by shell elements. Then superposition principle enable the global-local model to be combined interactively. Because the frame model cannot consider the rigidity of gusset plate and the interation of structural members due to the complexity of stress distribution in truss connection. The section modification factors are proposed to calibrate the stiffness of global frame element. The global-local model combination is verified by comparing the numerical results with experimental data obtained from the proof loading test to the operating truss bridge. Furthermore, stress histrories of the truss bridge are generated in the consideration of the rigidity of truss connection with local damage by using the combination method.

  • PDF