• 제목/요약/키워드: End Effects

검색결과 3,671건 처리시간 0.028초

Phrase positional effects on F0 peak timing in Tokyo Japanese

  • 조혜선
    • 말소리와 음성과학
    • /
    • 제3권3호
    • /
    • pp.69-75
    • /
    • 2011
  • This paper investigates phrase positional effects on the timing of F0 (pitch) peaks in Tokyo Japanese disyllabic words with varying accent type (HL or LH) and phrase position (final or non final). The F0 peak timing was normalized by the total word duration ('normalized H timing'). The normalized H timing was significantly affected by accent type and phrase position. The H timing was later in the LH accent type than in the HL accent type, and in non final positions than in final positions. In addition, to examine the validity of the quantitative results, different models of phrase position effects were compared by measuring H timing in two approaches: normalization versus relative distance measures. For the normalization measures, the H timing was measured as the time of the F0 peak divided by the total word duration or by the duration of the tone bearing syllable. For the relative distance measures, the H timing was measured as the distance in milliseconds from the end of the word or from the end of the associated syllable. The best model was the normalization by the total word duration, rather than by the duration of the tone bearing syllable. This means that phrase positional effects on the timing of F0 peaks in Japanese disyllabic words are best modeled in terms of proportion of the total word duration.

  • PDF

엔드밀에 의한 원통 가공시 절삭조건에 따른 진원도의 실험적 연구 (An experimental study on the roundness effect for the cutting conditions in a cylinder cutting by end mill)

  • 박희견
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.52-60
    • /
    • 1999
  • In this study the effect of roundness error with respect to the cutting conditions using the external cylindrical work piece by end mill cutting in a machining center was studied. the end mill used in this study is HSS coated with Ti-N which is of Ø 12-4 flutes. The material of workpiece is SM20C and cutting oil is used as a cooling flued The cutting experiments were carried out for the several cutting conditions(depth of cut height of end mill feed rate revolution per minute and cutting direction) and their roundness effects were compared using the least squares circle measuring method. The experimental results are summarized as follows : 1) The cutting depth is dominant for the roundness of a cylindrical work piece and the cutting speed must be determined precisely when the cutting depth is large 2) When the cutting direction in circular manufacturing is the same with the spindle rotation i.e up-cutting condition the surface roundness is also improved.

  • PDF

봉단 용접부 와전류탐상의 기초적인 연구 (A Basic Study on Eddy Current Testing of End-Cap Welds)

  • 서동만;심기섭;권우주;김정하;박춘호
    • 비파괴검사학회지
    • /
    • 제18권2호
    • /
    • pp.85-91
    • /
    • 1998
  • 핵연료 제작과정에서 봉단마개 용접부는 완벽한 품질이 요구되고 있다. 본 연구에서는 와전류탐상방법을 이용하여 봉단마개 용접부의 검사를 위한 기초적인 방법을 연구하였다. 봉단마개 용접부 와전류검사를 위한 주사속도와 와전류신호의 최대주파수를 찾았고 잡음신호제거를 위해 대역통과여파기(0-250Hz)론 사용하였다. 이러한 와전류탐상방법은 직경 0.35mm의 작은 핀홀결함에서도 좋은 감도를 얻을 수 있었다.

  • PDF

헬릭스각의 변화에 따른 밀링공구의 변위 특성 연구 (The Characteristics of the Milling Tool Deflection According to the Variation of Helix Angle)

  • 맹민재;정준기
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.860-866
    • /
    • 2004
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining, with implications on the selection of cutting parameters and economics of the operation. Several studies were devoted to the end mill deflection and its effects, notably, providing a useful insight into the problem. Although the deflection affects adversely the accuracy, the flexibility of the cutter is beneficial in attenuating the overload in a sudden transient situation, as well as in attenuating chatter. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

전폐형 유도전동기 엔드와인딩 표면의 열전달에 미치는 회전자팬의 영향 (Rotor fan effects on end winding heat transfer in totally enclosed fan cooled induction motor)

  • 윤명근;고상근
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.928-938
    • /
    • 1997
  • The end winding is an important part in induction motor for thermal analysis. But there is little information on the heat transfer coefficient of that surfaces because of geometrical complexity. So our experimental object is to know the heat transfer coefficient of end winding and find the optimum design parameter of rotor fan. Carbon coated papers were used for a uniform heat generating surfaces which were easy to fabricate. The experiments of some parameters were performed as varying rotation speed of rotor fan. We obtained the local and average Nusselt number of the end winding surfaces by correcting radiation and conduction losses errors. The results showed that the average Nusselt number increased with rotor fan blade number and width but decreased with end winding length. However, the increasing limits existed in the case of rotor fan width and blade number. So optimum design value were obtained for rotor fan width and blade numbers.

차량 저속 추돌의 연속 접촉력 모델 (Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during down-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;이동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column)

  • 윤한익;박일주;진종태;김영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

Analysis of the Wet-end Dynamics in Paper Mills

  • 류재용;여영구;서동준;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2003년도 추계학술발표논문집
    • /
    • pp.306-330
    • /
    • 2003
  • The wet-end dynamics of a paper mill was analyzed to characterize its dynamic behavior during the grade change. The model representing the wet-end section is developed based on the mass balance relationships written for the simplified wet-end white water network. From the linearization of the dynamic model, higher-order Laplace transfer functions were obtained followed by the reduction procedure to give simple lower-order models in the form of $1^{st}$-order or $2^{nd}$-order plus dead times. The dynamic response of the wet-end is influenced both by the white water volume and by the level of wire retention. Effects of key manipulated variables such as the thick stock flow rate, the ash flow rate and the retention aid flow rate on the major controlled variables were analyzed by numerical simulations. The simple dynamic model developed in the present study can be effectively used in the operation and control.

  • PDF

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column)

  • 윤한익;박일주;김영수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF