• Title/Summary/Keyword: Encyclopedia

Search Result 249, Processing Time 0.022 seconds

Transcriptome Analysis of the Striatum of Electroacupuncture-treated Naïve and Ischemic Stroke Mice

  • Hong Ju Lee;Hwa Kyoung Shin;Ji-Hwan Kim;Byung Tae Choi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.162-171
    • /
    • 2024
  • Objectives: Electroacupuncture (EA) has been demonstrated to aid stroke recovery. However, few investigations have focused on identifying the potent molecular targets of EA by comparing EA stimulation between naïve and disease models. Therefore, this study was undertaken to identify the potent molecular therapeutic mechanisms underlying EA stimulation in ischemic stroke through a comparison of mRNA sequencing data obtained from EA-treated naïve control and ischemic stroke mouse models. Methods: Using both naïve control and middle cerebral artery occlusion (MCAO) mouse models, EA stimulation was administered at two acupoints, Baihui (GV20) and Dazhui (GV14), at a frequency of 2 Hz. Comprehensive assessments were conducted, including behavioral evaluations, RNA sequencing to identify differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction (PPI) network analysis, and quantitative real-time PCR. Results: EA stimulation ameliorated the ischemic insult-induced motor dysfunction in mice with ischemic stroke. Comparative analysis between control vs. MCAO, control vs. control + EA, and MCAO vs. MCAO + EA revealed 4,407, 101, and 82 DEGs, respectively. Of these, 30, 7, and 1 were common across the respective groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed upregulated DEGs associated with the regulation of inflammatory immune response in the MCAO vs. MCAO + EA comparison. Conversely, downregulated DEGs in the control vs. control + EA comparison were linked to neuronal development. PPI analysis revealed major clustering related to the regulation of cytokines, such as Cxcl9, Pcp2, Ccl11, and Cxcl13, in the common DEGs of MCAO vs. MCAO + EA, with Esp8l1 identified as the only common downregulated DEG in both EA-treated naïve and ischemic models. Conclusion: These findings underscore the diverse potent mechanisms of EA stimulation between naïve and ischemic stroke mice, albeit with few overlaps. However, the potent mechanisms underlying EA treatment in ischemic stroke models were associated with the regulation of inflammatory processes involving cytokines.

Network pharmacology-based prediction of efficacy and mechanism of Myrrha acting on Allergic Rhinitis (네트워크 약리학을 활용한 알레르기 비염에서의 몰약의 치료 효능 및 기전 예측)

  • Yebin Lim;Bitna Kweon;Dong-Uk Kim;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.114-125
    • /
    • 2024
  • Objectives: Network pharmacology is an analysis method that explores drug-centered efficacy and mechanism by constructing a compound-target-disease network based on system biology, and is attracting attention as a methodology for studying herbal medicine that has the characteristics for multi-compound therapeutics. Thus, we investigated the potential functions and pathways of Myrrha on Allergic Rhinitis (AR) via network pharmacology analysis and molecular docking. Methods: Using public databases and PubChem database, compounds of Myrrha and their target genes were collected. The putative target genes of Myrrha and known target genes of AR were compared and found the correlation. Then, the network was constructed using STRING database, and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Binding-Docking stimulation was performed using CB-Dock. Results: The result showed that total 3 compounds and 55 related genes were gathered from Myrrha. 33 genes were interacted with AR gene set, suggesting that the effects of Myrrha are closely related to AR. Target genes of Myrrha are considerably associated with various pathways including 'Fc epsilon RI signaling pathway' and 'JAK-STAT signaling pathway'. As a result of blinding docking, AKT1, which is involved in both mechanisms, had high binding energies for abietic acid and dehydroabietic acid, which are components of Myrrha. Conclusion: Through a network pharmacological method, Myrrha was predicted to have high relevance with AR by regulating AKT1. This study could be used as a basis for studying therapeutic effects of Myrrha on AR.

Network Pharmacological Analysis of Cnidii Fructus Treatment for Gastritis (벌사상자의 위염 치료 적용에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Seungho Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2024
  • The purpose of this study was to identify the applicability, main compounds, and target genes of Cnidii Fructus (CF) in the treatment of gastritis using network pharmacology. The compounds in CF were searched in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC). The target gene information of the compounds was collected from pubchem and cross-compared with the gastritis-related target gene information collected from Genecard to derive the target genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the derived target genes. Afterwards, network analysis between compounds and disease target genes was performed using cytoscape. We identified 121 active compounds and 139 target genes associated with gastritis. Pathways derived from the GO biological process and KEGG pathway DB primarily focus on target genes related to inflammation (IL-6, IL-8, TNF production, NF-κB transcription factor activity, and NF-κB signaling pathway) and cell death (PI3K-Akt, FoxO). Major targets for CF treatment of gastritis include TP53, TNF, BCL2, EGFR, NFKB1, ABCB1, PPARG, PTGS2, IL6, IL1B, and SOD1, along with major compounds such as coumarin, osthol, hexadecanoic acid, oleic acid, linoleic acid, and stigmasterol. This study provided CF's applicability for gastritis, related compounds, and target information. Evaluating CF's effectiveness in a preclinical gastritis model suggests its potential use in clinical practice for digestive system diseases.

Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics

  • Lu Han;Weijia Chen;Ying Zong;Yan Zhao;Jianming Li;Zhongmei He;Rui Du
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.361-377
    • /
    • 2024
  • The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of AE and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Systems Pharmacological Approach to Identification of Schizonepeta teunifolia Extract via Active Ingredients Analysis and Cytotoxicity Effect on A549 Cell Lines (형개 추출물의 시스템 약리학적 분석과 비소세포폐암세포에 대한 증식 억제효과)

  • Ga Ram Yang;Ji Eun Choo;Youn Sook Kim;Won Gun Ahn
    • Korean Journal of Acupuncture
    • /
    • v.41 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • Objectives : This study aimed to predict the effectiveness and potential of Schizonepeta tenuifolia as an anticancer treatment for non-small cell lung cancer through network-based pharmacology and cellular experiment. Methods : To identify the major bioactive compounds in Schizonepeta tenuifolia, we used the Traditional Chinese Medicine Systems. The target genes for the cancer treatment were selected using the UniProt database and the networked using Cytoscape. We performed functional enrichment analysis based on the Gene Ontology Biological Process and Kyoto Encyclopedia of Genes and Genomes Pathways to predict the mechanisms. To investigate the effect of Schizonepeta tenuifolia on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with different concentrations of the drug and used the MTT assay for cell viability. Results : Research has shown that the most effective mechanism of active compounds from Schizonepeta tenuifolia is through the pathway of cancer. The results of the network pharmacology analysis indicate that Schizonepeta tenuifolia has potential medicinal value as an adjuvant in anticancer treatment. The concentration-dependent inhibition of cell viability was observed on A549 cells. Furthermore, synergistic anticancer activity with Doxorubicin was also observed. Conclusions : Through a network pharmacological approach, Schizonepeta tenuifolia was predicted to have potential as an anticancer agent, and its efficacy was experimentally demonstrated using A549 cells. These findings suggest that Schizonepeta tenuifolia is a promising candidate for future research.

Network pharmacology analysis of Jakyakgamchotang with corydalis tuber for anti-inflammation (작약감초탕 가 현호색의 항염증 기전에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Hongjun Kim;Han-bin Park;Seungho Lee
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • Objectives : The purpose of this study was to investigate the molecular targets and pathways of anti-inflammatory effects of Jakyakgamchotang with corydalis tuber (JC) using network pharmacology. Methods : The compounds in constituent herbal medicines of JC were searched in TCM systems pharmacology (TCMSP). Target gene informations of the components were collected using chemical-target interactions database provided by Pubchem. Afterwards, network analysis between compounds and inflammation-related target genes was performed using cytoscape. Go enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on inflammation-related targets using DAVID database. Results : 70 active compounds related to inflammation were identified, and 295 target genes related to the anti-inflammatory activity of the compound of JC were identified. In the Go biological process DB and KEGG pathway DB, "inflammatory response", "cellular response to lipopolysaccharide", "positive regulation of interleukin-6 production", and "positive regulation of protein kinase B. signaling", "positive regulation of ERK1 and ERK2 cascade", "positive regulation of I-kappaB kinase/NF-kappaB signaling", "negative regulation of apoptotic process", and "PI3K-Akt signaling pathway" were found to be mechanisms related to the anti-inflammatory effects related to the target genes of JC. The main compounds predicted to be involved in the anti-inflammatory effect of JC were quercetin, licochalcone B, (+)-catechin, kaempferol, and emodin. Conclusions : This study provides the molecular targets and potential pathways of JC on inflammation. It can be used as a basic data for using JC for various inflammatory disease in traditional korean medicine clinic.

Network Pharmacology Analysis and Efficacy Prediction of GunryeongTang Constituents in Diabetic Complications (당뇨 합병증과 군령탕 구성성분의 네트워크 약리학 분석 및 효능 예측)

  • Jung Joo Yoon;Hye Yoom Kim;Ai Lin Tai;Ho Sub Lee;Dae Gill Kang
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.11-28
    • /
    • 2024
  • Objectives : GunRyeong-Tang(GRT) is a traditional herbal prescription that combines Oryeongsan and Sagunja-tang. This study employed network analysis methods on the components of GRT and target genes related to diabetes complications to predict the improvement effects of GRT on diabetes complications. Methods : The collection of active compounds of GRT and related target genes involved the utilization of public databases and the PubChem database. We selected diabetes complication-related genes using GeneCards and confirmed their correlation through comparative analysis with the target genes of GRT. We constructed a network using Cytoscape 3.9.1 and conducted topological analysis. To predict the mechanism, we performed functional enrichment analysis based on Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results : Through network analysis, 234 active compounds and 1361 related genes were collected from GRT. A total of 9,136 genes related to diabetes complications were collected, and 1,039 target genes overlapping with the components of GRT were identified. The core genes of this network were TP53, INS, AKT1, ALB, and EGFR. In addition, GRT significantly reduced the H9c2 cell size and the expression of myocardial hypertrophy biomarkers (ANP, BNP), which were increased by high glucose (HG). Conclusions : Through this study, we were able to predict the activity and mechanism of action of GRT on diabetes and diabetic complications, and confirmed the potential of GRT as a treatment for diabetes complications through the effect of GRT on improving myocardial hypertrophy for diabetic cardiomyopathy.

Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway

  • Qiuyang Li;Hang Sun;Shiwei Liu;Jinxin Tang;Shengnan Liu;Pei Yin;Qianwen Mi;Jingsheng Liu;Lei yu;Yunfeng Bi
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.645-653
    • /
    • 2023
  • Background: Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results: Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion: These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.