• Title/Summary/Keyword: Encrypted spatial database

Search Result 2, Processing Time 0.021 seconds

A K-Nearest Neighbour Query Processing Algorithm for Encrypted Spatial Data in Road Network (도로 네트워크 환경에서 암호화된 공간데이터를 위한 K-최근접점 질의 처리 알고리즘)

  • Jang, Mi-Young;Chang, Jae-Woo
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.67-81
    • /
    • 2012
  • Due to the recent advancement of cloud computing, the research on database outsourcing has been actively done. Moreover, the number of users who utilize Location-based Services(LBS) has been increasing with the development in w ireless communication technology and mobile devices. Therefore, LBS providers attempt to outsource their spatial database to service provider, in order to reduce costs for data storage and management. However, because unauthorized access to sensitive data is possible in spatial database outsourcing, it is necessary to study on the preservation of a user's privacy. Thus, we, in this paper, propose a spatial data encryption scheme to produce outsourced database from an original database. We also propose a k-Nearest Neighbor(k-NN) query processing algorithm that efficiently performs k-NN by using the outsourced database. Finally, we show from performance analysis that our algorithm outperforms the existing one.

The Processing Method for a Reverse Nearest Neighbor Queries in a Search Space with the Presence of Obstacles (장애물이 존재하는 검색공간에서 역최대근접질의 처리방법에 관한 연구)

  • Seon, Hwi Joon;Kim, Hong Ki
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 2017
  • It is occurred frequently the reverse nearest neighbor queries to find objects where a query point can be the nearest neighbor object in recently applications like the encrypted spatial database. In a search space of the real world, however, there are many physical obstacles(e.g., rivers, lakes, highways, etc.). It is necessary the accurate measurement of distances considered the obstacles to increase the retrieval performance such as this circumstance. In this study, we present the algorithm and the measurement of distance to optimize the processing performance of reverse nearest neighbor queries in a search space with the presence of obstacles.