• Title/Summary/Keyword: Encased composite beam

Search Result 46, Processing Time 0.021 seconds

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

An Experimental Study on the Shear Connection of Inverted T-shape Composite Beam Encased Web (역T형강 합성보의 전단연결에 관한 실험적 연구)

  • Jeong, Jae-Hun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.131-138
    • /
    • 2001
  • In inverted T-shape composite beam examine the structural behavior by experiment According to arrangement, type of stud connector, type of shear connector, reinforcement by welding of stirrup and a close analysis we came to these conclusion. 1) The compare result of bending strength according to arrange type of stud connector : A1-W(stud connector located web)specimen is exceed than A1-F(stud connector located flange). 2) B1-N(using prominence and depression of the web by shear connector) specimen is decrease than A1-W(using stud bolt by shear connector)specimen in bending strength and B2-N(reinforced by welding the stirrup to lower flange)specimen is similar with A2-W specimen. 3) According to reinforced by welding the stirrup to flange, the stiffness and bending strength of the beams are increase. A-scries stirrup comparatively low effective in the increase of strength by welding the stirrup to flange because enough composite effect show by stud connector, but B-series stirrup is comparatively high effective in shear connector effect because shortage of prominence and depression of the web.

  • PDF

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

Experiment research on seismic performance of prestressed steel reinforced high performance concrete beams

  • Xue, Weichen;Yang, Feng;Li, Liang
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.159-172
    • /
    • 2009
  • Two prestressed steel reinforced high performance concrete (SRC) beams, a nonprestressed SRC beam and a counterpart prestressed concrete beam were tested under low reversed cyclic loading to evaluate seismic performance of prestressed SRC beams. The failure modes, deformation restoring capacity, ductility and energy dissipation capacity of the prestressed SRC beams were discussed. Results showed that due to the effect of plastic deformations of steel beams encased in concrete, the three SRC beams exhibited residual deformation ratios ranging between 0.64 and 0.79, which were apparently higher than that of the prestressed concrete beam (0.33). The ductility coefficients of the prestressed SRC beams and the prestressed concrete beam ranged between 4.65 and 4.87, obviously lower than that of nonprestressed SRC beam (9.09), which indicated the steel beams influenced the ductility little while prestressing resulted in an apparent reduction in ductility. The amount of energy dissipated by the prestressed SRC beams was less than that dissipated by the nonprestressed SRC beam but much more than that dissipated by the prestressed concrete beam.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections (콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험)

  • Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.337-347
    • /
    • 2011
  • In this study, seismic resistance of concrete encased U-shaped steel beam-to-steel H-shaped column connections was evaluated. Three specimens of the beam-to-column connection were tested under cyclic loading. The composite beam was integrated with concrete slab using studs. Re-bars for negative moment were placed in the slab. The primary test parameter was the details of the connections, which are strengthening and weakening strategies for the beam end and the degree of composite action. The depth of the composite beams was 600mm including the slab thickness. The steel beam and the re-bars in the slab were weld-connected to the steel column. For the strengthening strategy, cover plates were weld-connected to the bottom and top flanges of the steel beam. For the weakening strategy, a void using styrofoam box was located inside the core concrete at the potential plastic hinge zone. The test results showed that the fully composite specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity of the beam exceeded 4% rotation angle, which is the requirement for the Special Moment Frame.

Experimental study on shear performance of partially precast Castellated Steel Reinforced Concrete (CPSRC) beams

  • Yang, Yong;Yu, Yunlong;Guo, Yuxiang;Roeder, Charles W.;Xue, Yicong;Shao, Yongjian
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.289-302
    • /
    • 2016
  • A new kind of partially precast or prefabricated castellated steel reinforced concrete beam, which is abbreviated here as CPSRC beam, was presented and introduced in this paper. This kind of CPSRC beam is composed of a precast outer-part and a cast-in-place inner-part. The precast outer-part is composed of an encased castellated steel shape, reinforcement bars and high performance concrete. The cast-in-place inner-part is made of common strength concrete, and is casted with the floor slabs simultaneously. In order to investigate the shear performance of the CPSRC beam, experiments of six CPSRC T-beam specimens, together with experiments of one cast-in-place SRC control T-beam specimen were conducted. All the specimens were subjected to sagging bending moment (or positive moment). In the tests, the influence of casting different strength of concrete in the cross section on the shear performance of the PPSRC beam was firstly emphasized, and the effect of the shear span-to-depth ratio on that were also especially taken into account too. During the tests, the shear force-deflection curves were recorded, while the strains of concrete, the steel shapes as well as the reinforcement stirrups at the shear zone of the specimens were also measured, and the crack propagation pattern together with the failure pattern was as well observed in detail. Based on the test results, the shear failure mechanism was clearly revealed, and the effect of the concrete strength and shear span-to-depth ratios were investigated. The shear capacity of such kind of CPSRC was furthermore discussed, and the influences of the holes on the steel shape on the shear performance were particularly analyzed.

Static Tests on SRC Columns (SRC 기둥에 대한 정적실험)

  • Jung In Keun;Min Jin;Shim Chang Su;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF