• 제목/요약/키워드: Encased Composite Columns

검색결과 60건 처리시간 0.02초

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Behavior of lightweight aggregate concrete-encased composite columns

  • Al-Shahari, Abbas M.;Hunaiti, Yasser M.;Ghazaleh, Bassam Abu
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.97-110
    • /
    • 2003
  • An experimental study was conducted to investigate the behavior of eccentric lightweight aggregate concrete-encased composite columns. This study aims at verifying the validity of such type of concrete in composite construction and checking the adequacy of the AISC-LRFD and the British Bridge Code BS 5400 specifications in predicting the column strength. Sixteen full-scale pin ended columns subjected to uniaxial bending about the major axis in symmetrical single curvature were tested.

준정적 실험에 의한 SRC 합성교각의 내진성능 평가 (Seismic Performance Evaluation of SRC Column by Quasi-Static Test)

  • 한정훈;박창규;심창수;정영수
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.85-94
    • /
    • 2006
  • 지진지역의 교량교각에 대한 설계에서 요구연성도는 가장 중요한 요소이다. 철근콘크리트 교각의 내진성능 향상을 위해서 강관으로 교각을 감싸거나 후프철근과 같은 횡방향 철근을 이용하여 교각을 구속함으로써 교각의 연성도를 증가시키는 방안이 필요하다. 강재 매입형 교각을 이용하는 것은 RC 교각 내진성능을 향상시키는 유용한 방법중의 하나이다. 이 논문에서는 강재 매입형 합성교각의 내진성능을 평가하기 위하여 단일강재와 복수강재가 매입된 합성교각에 대하여 준정적 실험을 수행하였다. H형강이 매입된 실험체와 부분 충진된 원형강관이 매입된 단면으로 구성되어 총 8기의 실험체를 제작하였다. 실험변수는 심부구속 철근비, 매입 강재의 종류와 양으로서 이에 대한 변위연성도를 분석하였다. 실험결과 강재매입으로 인하여 교각의 변형능력이 증가하였으며 특히 원형강관이 매입된 교각의 변위연성도와 횡방향 강도가 가장 크게 나타났다.

SRC 합성교각의 비탄성거동에 대한 유한요소해석 (Finite Element Analysis of Inelastic Behavior of SRC Composite Piers)

  • 심창수;한정훈;박창규;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Structural behavior of partially encased composite columns under axial loads

  • Pereira, Margot F.;De Nardin, Silvana;El Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1305-1322
    • /
    • 2016
  • This paper presents the results of experimental and numerical model analyses on partially encased composite columns under concentric loads. The main objective of this study is to evaluate the influence of replacing the conventional longitudinal and transverse steel bars by welded wire mesh on the structural behavior of these members under concentric loads. To achieve these goals experimental tests on four specimens of partially encased composite columns submitted to axial loading were performed and the results were promising in terms of replacing the traditional reinforcement by steel meshes. In addition, a numerical FE model was developed using the software DIANA$^{(R)}$ with FX+. The experimental results were used to validate the numerical model. Satisfactory agreement between experimental and numerical results was observed in both capacity and deformability of the composite columns. Despite of the simplifying assumptions of perfect bond between steel and concrete, the numerical model adequately represented the columns behavior. A finite element parametric study was performed and parameters including thickness of the steel profile and the concrete and steel strengths were evaluated. The parametrical study results found no significant changes in the partially encased columns behavior due to variations of the steel profile thickness or yield strength. However, significant changes in the post peak behavior were observed when using high strength concrete and these results suggest a change in the failure mode.

Experimental study on concrete-encased composite columns with separate steel sections

  • Xiao, Congzhen;Deng, Fei;Chen, Tao;Zhao, Zuozhou
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.483-491
    • /
    • 2017
  • This paper presents an experimental study on the behavior of concrete-encased composite columns with multiseparate steel sections subjected to axial and eccentric loads. Six 1/4-scaled concrete-encased composite columns were tested under static loads. The specimens were identical in geometric dimensions and configurations, and the parameter of this experiment was the eccentricity ratio of the applied load. Each two of the specimens were loaded with 0, 10%, and 15% eccentricity ratios. The capacity, deformation pattern, and failure mode of the specimens were carefully examined. Test results indicate that full composite action between the concrete and the steel sections can be realized even though the steel sections do not connect with one another. The concrete-encased composite columns can develop stable behavior and sufficient deformation capacity by providing enough transverse reinforcing bars. Capacities of the specimens were evaluated based on both the Plain Section Assumption (PSA) method and the superimposition method. Results show that U.S. and Chinese codes can be accurate and safe in terms of bending capacities. Test results also indicate that the ACI 318 and Mirza methods give the best predictions on the flexural stiffness of this kind of composite columns.

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes

  • Divyah, N.;Prakash, R.;Srividhya, S.;Sivakumar, A.
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.387-400
    • /
    • 2022
  • The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.