• Title/Summary/Keyword: Enantiomers

Search Result 164, Processing Time 0.02 seconds

NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD)

  • Lee, Sang-Hoo;Yi, Dong-Heui;Jung, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.216-220
    • /
    • 2004
  • ${\beta}$-CD and CM- ${\beta}$-CD as chiral NMR shift agents were used to resolve the enantiomers of noradrenaline (NA). The stoichiometry of each complex formed between the CDs and the enantiomers of NA was found to be 1 : 1 through the continuous variation plots. The binding constants (K) of the complexes were determined from $^1H$ NMR titration curves. This result indicated that both ${\beta}$-CD and CM- ${\beta}$-CD formed the complexes with the S(+)-NA more preferentially than its R(-)-enantiomer. The K values for the complexes with ${\beta}$-CD ($K_{S(+)}$ = 537 $M^{-1}$ and $K_{R(-)}$ = 516 $M^{-1}$ was larger than those with CM- ${\beta}$-CD ($K_{S(+)}$ = 435 $M^{-1}$ and $K_{R(-)}$ = 313 $M^{-1}$), however, enantioselectivity (${\alpha}$) of S(+)- and R(-)-NA to CM- ${\beta}$-CD ( ${\alpha}$ = 1.38) was larger than that to ${\beta}$-CD ( ${\alpha}$ = 1.04), indicating that CM- ${\beta}$-CD was the better chiral NMR solvating agents for the recognition of the enantiomers of NA. Two dimensional rotating frame nuclear Overhauser enhancement spectroscopy (ROESY) experiments were also performed to explain the binding properties in terms of spatial fitting of the NA molecule into the macrocyclic cavities.

Development of Chiral Stationary Phases for the Gas Chromatographic Separation of Amino Acid Enantiomers New diamide chiral stationary phase (아미노산 광학이성질체 분리를 위한 가스크로마토그라피용 키랄 고정상의 개발 -새로운 diamide계 키랄 고정상의 응용-)

  • Park, Man-Ki;Yang, Jeong-Sun;Lee, Mi-Yung
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • New diamide chiral stationary phases of four systematically substituted optically active N-(N-benzoyl-L-amino acid)-anilide synthesized from L-valine, L-leucine, L-isoleucine, and L-phenylalanine were described. The behaviors of these diamides as optically active stationary phases for the separation of N-trifluoroacetyl-D,L-amino acids were examined with respect to separation factors(${\alpha}$) and thermodynamic properties of interaction. The separation of twelve N-trifluoroacetyl-D,L-amino acid isopropyl esters were improved by the order of N-(N-benzoyl-L-leucyl)-anilide>N-(N-benzoyl-L-isoleucyl)-anilide>N-(N-benzoyl-L-valyl)-anilide>N-(N-benzoyl-L-phenylalanyl)-anilide. Eight amino acid derivatives with non-polar R-group and threonine, serine, aspartic acid, and glutamic acid enantiomers were separated on N-(N-benzoyl-L-leucyl)-anilide as chiral stationary phase with good separation factor between 1.07-1.25. The separation factors decreased with respect to increasing column temperature. Possible working temperature of diamide phase was between $130-190^{\circ}C$ for N-(N-benzoyl-L-phenylalanyl)-anilide and $130-180^{\circ}C$ for other three diamide phases. The differential Gibb's free energy (${\Delta}{\Delta}G$) of enantiomers was in the range of -100--180 cal/mol for ten amino acids and -40--60 cal/mol for alanine and aspartic acid.

  • PDF

Influence of the pH and Enantiomer on the Antioxidant Activity of Maillard Reaction Mixture Solution in the Model Systems

  • Kim, Ji-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.287-296
    • /
    • 2010
  • This study was designed to investigate the influence of the pH and enantiomer on the antioxidant activity of Maillard reaction mixture solution in model systems. The loss of glucose in MRPs did not show different characteristics for the different amino acid enantiomers; however, the concentration of glucose decreased as the pH levels increased. The enolization of sugars was observed in all MRP samples according to increase of pH levels. In addition, D-amino acids were detected in L-amino acid systems and L-amino acids could also be observed in D-amino acid systems. Formation of the isomer was the highest in the Glc/L-Lys system. The browning development increased as pH levels increased; however, browning development did not show different characteristics based on the use of L- versus D-isomers of the same amino acid. The L- and D-isomers show different absorption values in the UV-Vis spectra, but the absorption patterns display a similar shape. The antioxidant activities of MRPs derived from the Glc/Gly, Glc/L-Asn and Glc/D-Asn systems at pH 7.0 were greater compared to those of pH 4.0 and pH 10.0. The antioxidant activities of MRPs derived from the Glc/L-Lys and Glc/D-Lys systems decreased as the pH increased. In addition, the results show that the MRPs derived from the D-isomers have similar antioxidant activities as those from L-isomer. Therefore, the MRPs have the different antioxidant activities on the basis of the pH level, but not on the basis of different amino acid enantiomers.

Enantiospecific separation in biphasic Membrane Reactors

  • Giorno, Lidietta
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.15-18
    • /
    • 1998
  • Membrane reactors are systems which combine a chemical reactor with a membrane separation process allowing to carry out simultaneously conversion and product separation. The catalyst can be immobilized on the membrane or simply compartmentalized in a reaction space by the membrane. Membrane reactors are today investigated to produce optically pure isomers and/or resolve racemic mixture of enantiomers. The interest towards these systems is due to the increasing demand of enantiomerically pure compounds to be used in the pharmaceutical, food, and agrochemical industries. In fact, enantiomers can have different biological activities, which often influence the efficacy or toxicity of the compound. On the basis of current literature there are basically two schemes on the use of membrane technology to produce enantiomers. In one case, the membrane itseft is intrinsically enantioselective: the membrane is the chiral system which selectively separates the wanted isomer on the basis of its conformation. In the other, a kinetic resolution using an enantiospecific biocatalyst is combined with a membrane separation process; the membrane separates the product from the substrate on the basis of their relative chemical properties (i.e. solubility). This kind of configuration is widely used to carry out kinetic resolutions of low water soluble substrams in biphasic membrane reactors [Giomo, 1995, 1997; Lopez, 1997]. These are systems where enzyme-loaded membranes promote reactions between two separate phases thanks to the properties of enzymes, such as lipases, to catalyse reactions at the org ic/aqueous interface; the two phases are maintained in contact and separated at the membrane level by operating at appropriate transmembrane pressure. A schematic representation of biphasic membrane reactor is shown in figure 1, while an example of enantiospecific reaction and product separation carried out with these systems is reported in figure 2.

  • PDF

Chiral Separation of the Enantiomers of Metoprolol and Its Metabolites by High Performance Liquid Chromatography

  • Kim, Kyeong-Ho;Shin, Sang-Duk;Lee, Joo-Hyun;Lee, Sang-Cheal;Kang, Jong-Seong;Mar, Woong-chon;Hong, Seon-Pyo;Kim, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.23 no.3
    • /
    • pp.230-236
    • /
    • 2000
  • (1'R, 2R)-, (1'R, 2S)-, (1'S, 2R)- and (1'S, 2S)-$\alpha$-hydroxymetoprolol; (2R)- and (2S)-O-des-methylmetoprolol; and (2R)- and (2S)-metoprolol acid are major metabolites of (2R)-and (2S)-metoprolol, $\beta$-adrenergic antagonist. The focus of most chiral separation methods until now has been on determination of the enantiomeric parent drug. However, it is just as important to be able to follow the metabolism of the enantiomers and their possible chiral metabolites. Therefore, for the study of stereoselective metabolism and pharmacokinetics of metoprolol, the chiral separation of the enantiomers of metoprolol and its metabolites has been investigated using four chiral stationary phases, i.e., Chiralcel OD, Chiral-AGP, Cyclobond I and Sumichiral OA-4900 columns. Metoprolol acid was resolved only by Sumichiral OA-4900. Chiralcel OD provided the highest separation factor and resolution value for metoprolol and O-desmethylmetoprolol and partially resolved the four stereoisomers of $\alpha$-hydroxymetoprolol. Diastereomeric $\alpha$-hydroxymetoprolols were resolved using the coupled column chromatographic system of two chiral stationary phases, Sumichiral OA-4900 column and Chiralcel OD column.

  • PDF

Enantioselective electrophoretic behavior of lipoic acid in single and dual cyclodextrin systems

  • Le, Thi-Anh-Tuyet;Nguyen, Bao-Tan;Phan, Thanh Dung;Kang, Jong-Seong;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.143-152
    • /
    • 2021
  • Capillary electrophoresis (CE) is an effective technique to study chiral recognition because it offers flexibility in adjusting vital factors. Currently, various available cyclodextrins (CDs) can be employed for the chiral separation of numerous analytes. Herein, we investigate the enantioseparation behavior of lipoic acid enantiomers in various types of single and dual CD systems through CE. Additionally, several impacted CE parameters were optimized through the systematic investigation based on the design of experiment (DoE) concept for a single system comprising a heptakis (2,3,6-tri-O-methyl)-β-CD and a dual system containing the combination of the single CD with a sulfated-β-CD. Consequently, absolute enantioresolution was obtained within 15 min on a common standard bare fused-silica capillary (64.5/56 cm in total/effective length, 50/365 ㎛ inner/outer diameter), maintained at 15 ℃ and at an applied voltage of 24 kV. The optimal background electrolyte consisted of 6 mM heptakis (2,3,6-tri-O-methyl)-β-CD dissolved in the solution of 58 mM borate buffer at pH 10. Furthermore, the results of apparent binding constant experiments indicated that the S-enantiomer-heptakis (2,3,6-tri-O-methyl)-β-CD complex exhibited a stronger affinity than its R-enantiomer counterpart. The obtained electrophoretic mobility values could be utilized to interpret the resolution achieved at various CD concentrations and the mobility behavior of the complexes elucidated the migration order of the enantiomers in an electropherogram.

Cyclodextrins' effect on the enatioseparation of some PPIs and capillary electrophoresis method development for determining rabeprazole enantiomers

  • Choi, Yusung;Pham, Thuy-Vy;Mai, Xuan-Lan;Truong, Quoc-Ky;Le, Thi-Anh-Tuyet;Nguyen, Thi-Ngoc-Van;Lee, Gunhee;Kang, Jong-Seong;Mar, Woongchon;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.185-195
    • /
    • 2019
  • Over the past decades, chiral switch of the proton pump inhibitors (PPIs) has been received widespread attention in therapeutic advantages as well as pharmaceutical analysis. In present study, the influence of cyclodextrins (CDs) on the chiral separation of four common PPIs (lansoprazole, omeprazole, pantoprazole, and rabeprazole) was investigated. The results demonstrated that capillary electrophoresis (CE) with dual CDs as a chiral selector system is a possible and promising method for the enantioseparation of these PPIs. Rabeprazole, which is the most challenging and acid-labile candidate among four PPIs, was selected for further development of the technique. To optimize CE condition, the effects of capillary parameters and background electrolytes on the enantioseparation were investigated. Finally, the best chiral separation was acheived by using sulfobutyl ether-${\beta}$-CD, and ${\gamma}$-CD as dual chiral selectors. The developed CE method not only provided the effective chiral separation but also showed the good stability of rabeprazole. The proposed method was successfully validated according to the International Conference on Harmonization guideline and effectively applied to determine rabeprazole enantiomers in commercial rabeprazole tablets, with recoveries ranging from 97.17 % to 103.29 % of the label content.

Quantitative Analysis and Enantiomeric Separation of Ephedra Alkaloids in Ma Huang Related Products by HPLC-DAD and UPLC-MS/MS

  • Kyoung-Moon Han;Jinwoo Hwang;Sun Hee Lee;Boreum Park;Hyungil Kim;Sun Young Baek
    • Natural Product Sciences
    • /
    • v.28 no.4
    • /
    • pp.168-180
    • /
    • 2022
  • Ephedra is a genus of the Ephedraceae family and is found in temperate regions, such as Central Asia and Europe. Among the various ephedra species, Ma Huang (Ephedra herb) is derived from the aerial parts of Ephedra sinica S tapf, Ephedra equisetina Bunge, and Ephedra intermedia Schrenk & C.A. Mey. Ma Huang contains various ephedra alkaloids, including (-)-ephedrine, (+)-pseudoephedrine, (-)-norephedrine, (+)-norpseudoephedrine, (-)-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared as racemates. Although the use of Ma Huang in foods is prohibited in Korea, products containing Ma Huang can be imported, and so it is necessary to develop a suitable analytical technique for the detection of Ma Huang in foods. Herein, we report the development of analytical methods for the detection of ephedra alkaloids in products containing Ma Huang. Following sample purification by solid phase extraction, quantitative analysis was performed using ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS). Additionally, the enantiomers were successfully separated using HPLC-DAD. We successfully analyzed various food samples, where the ephedra alkaloids were qualitatively and quantitatively determined, and the enantiomers were separated. It is expected that these methods may contribute toward preventing the distribution of illegal products containing Ma Huang.