DOI QR코드

DOI QR Code

NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD)

  • Lee, Sang-Hoo (Department of Microbial Engineering, Konkuk University) ;
  • Yi, Dong-Heui (Department of Microbial Engineering, Konkuk University) ;
  • Jung, Seung-Ho (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2004.02.20

Abstract

${\beta}$-CD and CM- ${\beta}$-CD as chiral NMR shift agents were used to resolve the enantiomers of noradrenaline (NA). The stoichiometry of each complex formed between the CDs and the enantiomers of NA was found to be 1 : 1 through the continuous variation plots. The binding constants (K) of the complexes were determined from $^1H$ NMR titration curves. This result indicated that both ${\beta}$-CD and CM- ${\beta}$-CD formed the complexes with the S(+)-NA more preferentially than its R(-)-enantiomer. The K values for the complexes with ${\beta}$-CD ($K_{S(+)}$ = 537 $M^{-1}$ and $K_{R(-)}$ = 516 $M^{-1}$ was larger than those with CM- ${\beta}$-CD ($K_{S(+)}$ = 435 $M^{-1}$ and $K_{R(-)}$ = 313 $M^{-1}$), however, enantioselectivity (${\alpha}$) of S(+)- and R(-)-NA to CM- ${\beta}$-CD ( ${\alpha}$ = 1.38) was larger than that to ${\beta}$-CD ( ${\alpha}$ = 1.04), indicating that CM- ${\beta}$-CD was the better chiral NMR solvating agents for the recognition of the enantiomers of NA. Two dimensional rotating frame nuclear Overhauser enhancement spectroscopy (ROESY) experiments were also performed to explain the binding properties in terms of spatial fitting of the NA molecule into the macrocyclic cavities.

Keywords

References

  1. Wenzel, T. J.; Thurston, J. E. J. Org. Chem. 2000, 65, 1243-1248. https://doi.org/10.1021/jo9913154
  2. Lee, S.; Jung, S. Carbohydr. Res. 2002, 337, 1785-1789. https://doi.org/10.1016/S0008-6215(02)00286-0
  3. Li, S.; Purdy, W. C. Anal. Chem. 1992, 64, 1405-1412. https://doi.org/10.1021/ac00037a019
  4. Park, K. K.; Park, J. M. Bull. Korean Chem. Soc. 1996, 17, 1052-1056.
  5. MacNicol, D. D.; Rycroft, D. S. Tetrahedron Lett. 1977, 25, 2173-2176.
  6. Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry; Springer-Verlag: New York, 1978.
  7. Subramanian, G. A Practical Approach to Chiral Separations byLiquid Chromatography; VCH: Weinheim, 1994.
  8. Koppenhoefer, B.; Zhu, X.; Jakob, A.; Wuerthner, S.; Li, B. J.Chromatogr. A 2000, 875, 135-161. https://doi.org/10.1016/S0021-9673(99)01210-8
  9. Holzgrabe, U.; Mallwitz, H.; Branch, S. K.; Jefferies, T. M.;Wiese, M. Chirality 1997, 9, 211-219. https://doi.org/10.1002/(SICI)1520-636X(1997)9:3<211::AID-CHIR2>3.0.CO;2-I
  10. Inoue, Y. NMR Studies of the Structural and Properties of Cyclodextrins and Their Inclusion Complexes in Annual Reports on NMR Spectroscopy; Academic Press: London, 1993; pp 59-101.
  11. Redondo, J.; Frigola, J.; Torrens, A.; Lupon, P. Magn. Reson.Chem. 1995, 33, 104-109. https://doi.org/10.1002/mrc.1260330204
  12. Takeshi, F.; Katsuhisa, M.; Tomofumi, S.; Hiroshi, H.; Kazuhiro,I. Biomed. Chem. 1998, 12, 1-3. https://doi.org/10.1002/(SICI)1099-0801(199801/02)12:1<1::AID-BMC694>3.0.CO;2-W
  13. Schwarz, M. A.; Hauser, P. C. J. Chromatogr. A 2001, 928, 225-232. https://doi.org/10.1016/S0021-9673(01)01131-1
  14. Connors, K. A. Binding Constants. The Measurement of MolecularComplex Stability; Wiley: New York, 1987; pp 24-28.
  15. Job, P. Ann. Chim. 1928, 9, 113-203.
  16. Scott, R. L. Rec. Trav. Chim. 1956, 75, 787-789.
  17. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71,2703-2707. https://doi.org/10.1021/ja01176a030
  18. Kim, K. H.; Park, Y. H. Int. J. Pharm. 1998, 175, 247-253. https://doi.org/10.1016/S0378-5173(98)00278-6
  19. Park, K.-L.; Kim, K. H.; Jung, S. H.; Lim, H. M.; Hong, C.-H.;Kang, J.-S. J. Pharm. Biomed. Anal. 2002, 27, 569-576. https://doi.org/10.1016/S0731-7085(01)00580-5
  20. Quang, C.; Khaledi, M. G. Anal. Chem. 1993, 65, 3354-3358. https://doi.org/10.1021/ac00071a003
  21. Bothner-By, A. A.; Stephens, R. L.; Lee, J. J. J. Am. Chem. Soc.1984, 106, 811-813. https://doi.org/10.1021/ja00315a069
  22. Botsi, A.; Yannakopoulo, K.; Perly, B.; Hadjoudis, E. J. Org.Chem. 1995, 60, 4017-4023. https://doi.org/10.1021/jo00118a018
  23. Salvatierra, D.; Jaime, C.; Virgili, A.; Sanchez-Ferrando, F. J. Org.Chem. 1996, 61, 9578-9581. https://doi.org/10.1021/jo9612032
  24. Chankvetadze, B.; Schulte, G.; Bergenthal, D.; Blaschke, G. J.Chromatogr. A 1998, 798, 315-323. https://doi.org/10.1016/S0021-9673(97)00999-0
  25. Endresz, G.; Chankvetadze, B.; Bergenthal, D.; Blaschke, G. J.Chromatogr. A 1996, 732, 133-142. https://doi.org/10.1016/0021-9673(95)01244-3
  26. Park, K. K.; Lim, H. S.; Park, J. W. Bull. Korean Chem. Soc. 1999,20, 211-213.
  27. Kim, H.; Jeong, K; Lee, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 95-98. https://doi.org/10.5012/bkcs.2003.24.1.095
  28. Kim, H.; Jeong, K; Lee, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 95-98. https://doi.org/10.1016/S0008-6215(00)00101-4

Cited by

  1. Complexes of peracetylated cyclodextrin in a non-aqueous aprotic medium: the role of residual water vol.17, pp.26, 2015, https://doi.org/10.1039/C5CP02379C
  2. F NMR spectroscopy vol.40, pp.10, 2016, https://doi.org/10.1039/C6NJ00356G
  3. Chiral recognition of aromatic compounds by β-cyclodextrin based on bimodal complexation vol.11, pp.3, 2005, https://doi.org/10.1007/s00894-004-0233-6
  4. H-NMR vol.1, pp.3, 2009, https://doi.org/10.1002/dta.23
  5. pH-Dependent On-off Inclusion Complexation of Carboxymethylated Cyclosophoraoses with Neutral Red vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.675
  6. Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.769
  7. Chiral Separation and Discrimination of Catechin by Microbial Cyclic β-(1→3),(1→6)-glucans Isolated from Bradyrhizobium japonicum vol.28, pp.2, 2004, https://doi.org/10.5012/bkcs.2007.28.2.347
  8. Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy vol.938, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2009.09.025
  9. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds vol.13, pp.None, 2017, https://doi.org/10.3762/bjoc.13.6
  10. Sulfated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds vol.28, pp.8, 2004, https://doi.org/10.1016/j.tetasy.2017.07.003