• 제목/요약/키워드: Carboxymethyl- ${\beta}$-cyclodextrin (CM- ${\beta}$-CD)

검색결과 3건 처리시간 0.015초

모세관 전기영동법을 이용한 베타차단제-시클로덱스트린 포접화합물의 안정도상수 결정 (Determination of Stability Constants for $\beta$-Blocker and Carboxymethyl-$\beta$-cyclodextrin Complexes by Capillary Electrophoresis)

  • 박경래;임환미;뉴엔티퐁;김경호;강종성
    • 약학회지
    • /
    • 제47권4호
    • /
    • pp.200-205
    • /
    • 2003
  • The stability constants for the inclusion complexes between carboxymethyl-$\beta$-cyclodextrin (CM-$\beta$-CD) and five $\beta$-blockers, such as atenolol (ATE), bisoprolol (BIS), metoprolol (MET), pindolol (PIN) and propranolol (PRO) were determined by capillary electrophoresis. The magnitude of stability was decreased as following order; PRO>MET>BIS>ATE>PIN. Among them PRO showed the highest affinity towards CM-$\beta$-CD with stability constants of 383 and 371 $M^{-l}$ for (R)- and (S)-enantiomer, respectively. PIN enantiomers showed the lowest stability towards CM-$\beta$-CD, while the selectivity between (R)- and (S)-enantiomer was higher than any other tested $\beta$-blocker.r.

NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD)

  • Lee, Sang-Hoo;Yi, Dong-Heui;Jung, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.216-220
    • /
    • 2004
  • ${\beta}$-CD and CM- ${\beta}$-CD as chiral NMR shift agents were used to resolve the enantiomers of noradrenaline (NA). The stoichiometry of each complex formed between the CDs and the enantiomers of NA was found to be 1 : 1 through the continuous variation plots. The binding constants (K) of the complexes were determined from $^1H$ NMR titration curves. This result indicated that both ${\beta}$-CD and CM- ${\beta}$-CD formed the complexes with the S(+)-NA more preferentially than its R(-)-enantiomer. The K values for the complexes with ${\beta}$-CD ($K_{S(+)}$ = 537 $M^{-1}$ and $K_{R(-)}$ = 516 $M^{-1}$ was larger than those with CM- ${\beta}$-CD ($K_{S(+)}$ = 435 $M^{-1}$ and $K_{R(-)}$ = 313 $M^{-1}$), however, enantioselectivity (${\alpha}$) of S(+)- and R(-)-NA to CM- ${\beta}$-CD ( ${\alpha}$ = 1.38) was larger than that to ${\beta}$-CD ( ${\alpha}$ = 1.04), indicating that CM- ${\beta}$-CD was the better chiral NMR solvating agents for the recognition of the enantiomers of NA. Two dimensional rotating frame nuclear Overhauser enhancement spectroscopy (ROESY) experiments were also performed to explain the binding properties in terms of spatial fitting of the NA molecule into the macrocyclic cavities.

Chiral Purity Test of Bevantolol by Capillaryelectrophoresis and High Performance Liquid Chromatography

  • Long, Pham Hai;Trung, Tran Quoc;Oh, Joung-Won;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • 제29권9호
    • /
    • pp.808-813
    • /
    • 2006
  • Two methods for the chiral purity determination of bevantolol were developed, namely capillary electrophoresis (CE) using carboxymethyl-${\beta}$-cyclodextrin (CM-${\beta}$-CD) as a chiral selector and high-perfomance liquid chromatography (HPLC) using a chiral stationary phase. In the HPLC method, the separation of bevantolol enantiomers was performed on a Chiralpak AD-H column by isocratic elution with n-hexane-ethanol-diethylamine (10:90:0.1, v/v/v) as mobile phase. In the CE method, bevantolol enantiomers were separated on an uncoated fused silica capillary with 50 mM amonium phosphate dibasic adjusted to a pH 6.5 with phosphoric acid containing 15 mM CM-${\beta}$-CD as running buffer. Validation data such as linearity, recovery, detection limit, and precision of the two methods are presented. The detection limits of S-(-)-bevantolol were 0.1% and 0.05% for CE and HPLC method, respectively and R-(+)-bevantolol were 0.15% and 0.05% for CE and HPLC method, respectively. There was generally good agreement between the HPLC and CE results.