• Title/Summary/Keyword: Enantiomers

Search Result 164, Processing Time 0.024 seconds

Enantiospecific Membrane Processes

  • Giorno, Lidietta
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 1999
  • Membrane technology can be applied in two ways to produce pure enantiomers. In one case a membrane separation process can be cmbined with an enantiospecific reaction to obtain so-called 'en-antiospecific membrane reacto' These systems are useful to carry out asymmetric synthesis or kinetic resolution and simulatneously separate the produced enantiomer. As for general membrane reactors the result is a more compact system with a higher conversion: in fact removal of a product drives equilibrium-limited reactions towards completion. The other way to apply membrane technology to chiral production is the use of intrinsically enantioselective membranes that are able to distinguish between two isomers favouring preferential transport of only one isomer in absence of reaction. In this paper the current development of chiral membrane processes will be discussed.

  • PDF

Determination of Stability Constants for $\beta$-Blocker and Carboxymethyl-$\beta$-cyclodextrin Complexes by Capillary Electrophoresis (모세관 전기영동법을 이용한 베타차단제-시클로덱스트린 포접화합물의 안정도상수 결정)

  • 박경래;임환미;뉴엔티퐁;김경호;강종성
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.200-205
    • /
    • 2003
  • The stability constants for the inclusion complexes between carboxymethyl-$\beta$-cyclodextrin (CM-$\beta$-CD) and five $\beta$-blockers, such as atenolol (ATE), bisoprolol (BIS), metoprolol (MET), pindolol (PIN) and propranolol (PRO) were determined by capillary electrophoresis. The magnitude of stability was decreased as following order; PRO>MET>BIS>ATE>PIN. Among them PRO showed the highest affinity towards CM-$\beta$-CD with stability constants of 383 and 371 $M^{-l}$ for (R)- and (S)-enantiomer, respectively. PIN enantiomers showed the lowest stability towards CM-$\beta$-CD, while the selectivity between (R)- and (S)-enantiomer was higher than any other tested $\beta$-blocker.r.

Comparison of Enantioselective CEC Separation of OT-MIP Capillary Columns with Templates of Various Camphor Derivatives Made by the Pre-established General Preparation Protocol

  • Zaidi, Shabi Abbas;Lee, Seung-Mi;Lee, Ju-Young;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2934-2938
    • /
    • 2010
  • Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns with templates of camphor derivatives such as 10-camphorsulfonic acid (10-CSA), 10-camphorsulfonamide (10-CS) and camphor-p-tosyl hydrazone (CTH) have been successfully prepared by the prior generalized preparation protocol. The three MIP thin layers of different templates showed quite different morphologies. The chiral selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The optimization conditions were found to be different for the three MIPs. This work suggests prospective successful extension of the generalized preparation protocol for OT-MIP silica capillary columns toward templates of a variety of chemical groups.

Racemic Descriptors for Quantitative Structure Activity Relationship of Spirosuccinimide Type Aldose Reductase Inhibitors

  • Kim, Jeong-Rim;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1874-1876
    • /
    • 2004
  • Quantitative structure activity relationship has been probed for spirosuccinimide-fused tetrahydropyrrolo[1,2-a]pyrazine-1,3-dione derivatives acting as aldose reductase inhibitors. While the spirosuccinimide compounds contain a chiral center, the aldose reductase inhibition assay was performed with racemic mixtures in the published work. As the physicochemical descriptors of the QSAR analysis must be evaluated for a definite molecular structure, we devise a new 'racemic' descriptor as the arithmetic mean of the (R)-enantiomer descriptor and the (S)-enantiomer descriptor. The resultant QSAR model derived from the racemic descriptors outperforms the original QSAR models, closely reproducing the observed activity of optically pure enantiomers as well as racemic mixtures.

Chiral Separation of ${\beta}-Blockers$ after Derivatization with a New Chiral Derivatization Agent, GATC

  • Ko, Mi-Young;Shin, Dae-Hong;Oh, Joung-Weon;Asegahegn, Workaferhaw Shibru;Kim, Kyeong-Ho
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1061-1065
    • /
    • 2006
  • A new chiral derivatization agent with sugar moiety, 2,3,4,6-tetra-O-acetyl-${\beta}$-D-galactopyranosyl isothiocyanate (GATC) was synthesized. Several ${\beta}-blockers$ were investigated for the possible separation of the enantiomers by reversed-phase HPLC after derivatization with this new chiral derivatization agent (GATC). GATC was reacted readily with ${\beta}-blockers$ at room temperature and the reaction mixture could directly be injected into the HPLC system. The corresponding diastereomers were well resolved on an ODS column with acetonitrile-ammonium acetate buffer as a mobile phase and monitored at UV 254 nm. The optimization of the derivatization procedure (concentration of GATC, reaction temperature and time) and HPLC conditions (pH and ionic strength of mobile phase) were investigated and compared with GITC.

ENANTIOSPECIFIC MEMBRANE PROCESSES

  • Giorno, Lidietta
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.31-34
    • /
    • 1999
  • Membrane technology can be applied in two ways to produce pure enantiomers. In one case, a membrane separation process can be combined with an enantiospecific reaction to obtain so-called 'enantiospecific membrane reactor'. These systems are useful to carry out asymmetric synthesis or kinetic resolution and simultaneously separate the produced enantiomer. As for general membrane reactors, the result is a were compact system with a higher conversion; in fact, removal of a product drives equilibrium-limited reactions towards completion. The other way to apply membrane technology to chiral production is the use of intrinsically enantioselective membranes that are able to distinguish between two isomers favouring preperential transport of only one isomer in absence of reaction. In This paper, the current development of chiral membrane processes will be discussed.

  • PDF

Enantiomeric Compounds with Antileishimanial Activities from a Sponge, Plakortis sp

  • Lim, Chi-Won;Kim, Yeon-Kye;Youn, Ho-Dong;Park, Hee-Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.21-23
    • /
    • 2006
  • As part of a program to discover bioactive natural products from marine organisms, two new enantiomers, ent-3,6-Epidioxy-4,6,8,10-tetraethyltetradeca-7,11-dienoic acid and ent-[3,5-Diethyl-5-(2-ethyl-hex-3-enyl)-5H-furan-2-ylidene]-acetic acid methyl ether, were isolated from a sponge Plakortis sp. These compounds showed strong in vitro antiproliferative effects on promastigotes of Leishmania mexicania, flagellate protozoan that causes leishmaniasis. Structures were assumed by interpretation of NMR spectroscopic data and optical rotation. Both compounds exhibited significant antileishmanial activities in vitro with $IC_{50}$ of 1.0-23.0 ${\mu}g/ml$.

Optical Resolution of Dansyl Amino Acids with Addition of Benzyl-L-Hydroxyproline Copper(II) Chelate by High Performance Liquid Chromatography

  • Sun Haing Lee;Tae Sub Oh;Sang Hyun Bak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.491-495
    • /
    • 1989
  • Resolution of enantiomers of DNS-amino acids has been achieved by a reversed phase liquid chromatography with an addition of a copper(Ⅱ) complex of N-benzyl-L-hydroxyproline to the mobile phase. N-Benzyl-L-hydroxyproline was prepared and used as a chiral ligand of copper(Ⅱ) chelate for the optical resolution. The pH and the concentration of copper(Ⅱ) chelate, organic solvent, and buffer agent in the mobile phase all affect the optical resolutions of dansyl amino acids. The elution orders between D and L-DNS-amino acids were different depending on the structure of the side chain of the amino acids. The retention mechanism for the chiral separation of the dansyl amino acids can be illustrated by the equilibrium of ligand exchange and by hydrophobic interaction with $C_{18}$ stationary phase. The chiral separation can be illustrated with cis and trans effect of the ligand exchange reaction.

Investigation of Enantiomer Separation Using Chiral Crown Ethers as Chiral Selectors

  • Lee, Wonjae
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • A number of chiral selectors have been developed and applied for enantiomer separation of a variety of chiral compounds. Among these chiral selectors are chiral crown ethers, a class of synthetic host polyether molecules that bind protonated chiral primary amines with high selectivity and affinity. In this paper, two important chiral crown ethers as chiral selectors of bis-(1,1'-binaphthyl)-22-crown-6 and (18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) are focused. They have been widely used to resolve the enantiomers of chiral compounds containing a primary amino moiety using chiral stationary phases (CSPs) or chiral selectors by high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and so on in chirotechnology. Also, it was described that the commercially available covalent type HPLC CSPs derived from (+)- and (-)-18-C-6-TA have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

Chirality in Non-Hermitian Photonics

  • Yu, Sunkyu;Piao, Xianji;Park, Namkyoo
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.275-284
    • /
    • 2019
  • Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.