• Title/Summary/Keyword: Emulsion fuel

Search Result 50, Processing Time 0.02 seconds

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.

A Study on the Injection Characteristics of Diesel-water Emulsion Fuels according to Compositions (디젤-워터 에멀젼 연료의 조성에 따른 분무 특성에 관한 연구)

  • Woo, Seungchul;Kim, Hyungik;Park, Jangsoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 2015
  • Using Diesel-Water Emulsion fuel in commercial diesel engine can reduce NOx and soot when it is injected through the injector. Because water in Diesel-Water Emulsion fuel is vaporized ahead of diesel particle and it cause decrease of combustion temperature. Furthermore, research about the possibility of applicating Diesel-Water Emulsion fuels to commercial diesel engine is demanded in order to prove that Diesel-Water Emulsion fuel is able to apply commercial diesel engine without any replacement of equipments. This research analyzed applicable possibility of Diesel-Water Emulsion fuels to commercial diesel engine's fuel injection system refering injection and spray characteristics. In this research, there are 3 experiments, that is injection quantity, spray visualization, and injection rate. Diesel-Water Emulsion fuel has less injection quantities compared to diesel fuel, and spray penetration length is more longer than diesel. Furthermore, emulsion fuels have less dispersed than diesel fuel. In conclusion, comparing with diesel fuel with only spray characteristics, Diesel-Water Emulsion fuel has bad effects about dispersion and vaporization.

A study of Stability of Emulsion Fuel (에멀젼 연료의 안정성에 대한 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1330-1343
    • /
    • 2020
  • In this study, emulsion fuel which contained water of 10 ~ 20% was prepared mixed with water and MDO(Marine Diesel Oil) which largely used in near sea. Diffusion stability of emulsion fuel was measured. Diffusion stability was measured at 30℃, 45℃, and 60℃ for 10 days respectively. The stability of the emulsion fuel was stabilized in the order of MDO-10 > MDO-13 > MDO-16 > MDO-20 and it means that the stability of the emulsion fuel was found to be stable in the order of low water content. Meanwhile, an engine dynamo-meter was used to test whether the manufactured emulsion fuel was actually available in the engine. The emulsified MDO emulsion fuel could be used as fuel for ships. For samples with more than 16% water added emulsion fuel, smoke was reduced by more than 50% in the load area of more than 50%, and nitrogen oxides were reduced by 20%.

Effects on the Characteristics of Exhaust Emissions by using Emulsion Fuel in Diesel Engine (디젤기관에 있어서 에멀젼 연료가 배기배출물 특성에 미치는 영향)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.;Yoo, D.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • A study on the combustion and exhaust emissions characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 5%, 10%, 15%, 20%, 25%, and main measured items are specific fuel consumption, NOx and Soot emissions etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) NOx emissions decrease 30% in case of emulsion fuel ratio 25% at full load. 3) Soot emission decrease 58.9% in case of emulsion fuel ratio 25% at full load.

  • PDF

Effects on the Characteristics of Combustion by using Emulsion Fuel in Diesel Engine (디젤기관에 있어서 에멀젼 연료가 연소특성에 미치는 영향)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.;Yoo, D.H.;Seo, J.W.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.41-42
    • /
    • 2006
  • A study on the combustion characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 10%, 20%, and main measured items are specific fuel consumption, pressure, ratio of pressure rise, rate of heat release etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) Ratio of pressure rise and rate of heat release are about the same in the case of 10% and 20% of emulsion fuel ratio. 3) Cylinder Pressure increase 11.7%, ratio of pressure rise increase 60.4% in case of emulsion fuel ratio 20% at full load. 4) Rate of heat release increase 76.9% in case of emulsion fuel ratio 20% at full load.

  • PDF

Fuel Oil Characteristics of Mulching Waste Vinyl by Indirect Heating Emulsion System (간접가열 유화설비에 의한 폐멀칭비닐의 연료유 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • This paper describes the fuel oil characteristics of mulching waste vinyl by indirect heating emulsion system. For the emulsion experiment of waste vinyl, the system is composed of melting furnace, the 1th pyrolysis furnace, and the 2nd pyrolysis furnace. The mulching waste vinyl is used for the fuel oil characteristics analysis of mulching waste vinyl. The refined oil, gasoline, and diesel oil are extracted and quantified to analysis the fuel oil characteristics. From the results of experiments, it has been shown that the production of fuel oil from mulching waste vinyl is possible using the emulsion system.

  • PDF

Effects of Emulsified Fuel on Combustion Characteristics in a Diesel Engine (디젤기관에 있어서 에멀젼연료 연소특성에 미치는 영향)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.;Yoo, D.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • A study on combustion characteristics using emulsified fuel in a diesel engine were performed experimentally. In this paper, the experiments were performed at engine speed 1800rpm, emulsion ratios were 0%, 10%, 20%, and main measured items were specific fuel consumption, cylinder pressure, rate of pressure rise, rate of heat release etc. The obtained conclusions were as follows. 1) Specific fuel consumption increased maximum by 19.8% at low load, but was not affected at full load. 2) Rate of pressure rise and rate of heat release were about the same in the case of 10% and 20% of emulsion ratio. 3) Cylinder Pressure increased 9.6%, rate of pressure rise increased 53.4% in case of emulsion ratio 20% at full load. 4) Rate of heat release increased 72.4% in case of emulsion ratio 20% at full load.

  • PDF

Combustion Characteristics of Bio Emulsion Fuel (바이오에멀젼 연료의 연소 특성)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1421-1432
    • /
    • 2018
  • Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.