International Journal of Computer Science & Network Security
/
제23권8호
/
pp.40-48
/
2023
Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.
본 논문에서는 감정을 통해 단어의 의미가 변화될 때 운율과 음질로 표현되는 음향 요소가 어떠한 역할을 하는지 분석한다. 이를 위해 6명의 발화자에 의해 5가지 감정 상태로 표현된 60개의 데이터를 이용하여 감정에 따른 운율과 음질의 변화를 살펴본다. 감정에 따른 운율과 음질의 변화를 찾기 위해 8개의 음향 요소를 분석하였으며, 각 감정 상태를 표현하는 주요한 요소를 판별 해석을 통해 통계적으로 분석한다. 그 결과 화남의 감정은 음의 세기 및 2차 포먼트 대역너비와 깊은 연관이 있음을 확인할 수 있었고, 기쁨의 감정은 2차와 3차 포먼트 값 및 음의 세기와 연관이 있으며, 슬픔은 음질 보다는 주로 음의 세기와 높낮이 정보에 영향을 받는 것을 확인할 수 있었으며, 공포는 음의 높낮이와 2차 포먼트 값 및 그 대역너비와 깊은 관계가 있음을 알 수 있었다. 이러한 결과는 감정 음성 인식 시스템뿐만 아니라, 감정 음성 합성 시스템에서도 적극 활용될 수 있을 것으로 예상된다.
The present study describes a combination method to recognize the human affective states such as anger, happiness, sadness, or surprise. For this, we extracted emotional features from voice signals and facial expressions, and then trained them to recognize emotional states using hidden Markov model (HMM) and neural network (NN). For voices, we used prosodic parameters such as pitch signals, energy, and their derivatives, which were then trained by HMM for recognition. For facial expressions, on the other hands, we used feature parameters extracted from thermal and visible images, and these feature parameters were then trained by NN for recognition. The recognition rates for the combined parameters obtained from voice and facial expressions showed better performance than any of two isolated sets of parameters. The simulation results were also compared with human questionnaire results.
본 논문은 마이크로폰을 통해 실시간으로 습득된 음성으로부터 사람의 음성 감성상태를 평상, 기쁨, 슬픔, 화남 등 4가지로 구별할 수 있는 ARM 플랫폼 기반의 음성 감성인식 시스템 구현에 관한 것이다. 일반적으로 마이크로폰으로 수신된 음성은 화자 주변의 환경 잡음과 마이크로폰의 시스템 특성 때문에 입력 음성 신호가 왜곡되고 이로 인해 시스템의 성능이 저하된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산 량을 가진 이동평균(MA, Moving Average) 필터를 입력 음성의 특징벡터 열에 적용하였다. 또한, 효율적으로 감성 특징벡터를 최적화할 수 있는 SFS(Sequential Forward Selection)기법을 적용해 제안 시스템의 성능을 최적화하였으며 감성 패턴 분류기로는 SVM(Support Vector Machine)을 사용하였다. 실험 결과 제안 감성인식 시스템은 모의실험에서 약 65%, ARM 플랫폼에서 약 62%의 인식률을 보였다.
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.9-16
/
2023
Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.1076-1094
/
2022
Technology for emotion recognition is an essential part of human personality analysis. To define human personality characteristics, the existing method used the survey method. However, there are many cases where communication cannot make without considering emotions. Hence, emotional recognition technology is an essential element for communication but has also been adopted in many other fields. A person's emotions are revealed in various ways, typically including facial, speech, and biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice signals, and physiological signals. Physiological signals are measured with biological sensors and analyzed to identify emotions. This study employed two sensor types. First, the existing method, the binary arousal-valence method, was subdivided into four levels to classify emotions in more detail. Then, based on the current techniques classified as High/Low, the model was further subdivided into multi-levels. Finally, signal characteristics were extracted using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. Finally, the proposed emotional recognition system was evaluated by measuring actual sensors.
본 논문에서 음성신호를 사용하여 인간의 감정를 인식하기 위한 특징 파라메터 비교에 관하여 연구하였다. 이를 위하여 여러 가지 감정 상태에 따라 분류된 한국어 음성 데이터 베이스를 이용하여 얻어진 음성 신호의 피치와 에너지의 평균, 표준편차와 최대 값 등 통계적인 정보 나타내는 파라메터와 음소의 특성을 나타내는 MFCC 파라메터가 사용되었다. 파라메터들의 성능을 평가하기 위하여 문장 및 화자 독립 감정 인식 시스템을 구현하여 인식 실험을 수행하였다. 성능 평가를 위한 실험에서는 운율적 특징으로 피치와 에너지와 각각의 미분 값을 사용하였고, 음소의 특성을 나타내는 특징으로 MFCC와 그 미분 값을 사용하였다. 벡터 양자화 방법을 사용한 화자 및 문장 독립 인식 시스템을 사용한 실험 결과에서 MFCC와 델타 MFCC를 사용한 경우가 피치와 에너지를 사용한 방법보다 우수한 성능을 나타내었다.
Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.
본 연구는 음성의 감정인식에 있어서 크로마 피쳐를 기반으로 한 음성 토널 특성에 대하여 기술하였다. 토널 정보가 갖는 장조와 단조와 같은 정보가 음악의 분위기에 미치는 영향과 유사하게 음성의 감정을 인지하는 데에도 토널 정보의 영향이 존재한다. 감정과 토널 정보의 관계를 분석하기 위해서, 본 연구에서는 크로마 피쳐로부터 재합성된 신호를 이용하여 청각 실험을 수행하였고, 인지실험결과 긍정과 부정적 감정에 대한 구분이 가능한 것으로 확인되었다. 인지 실험을 바탕으로 음성에 적합한 토널 피쳐를 적용하여 감정인식 실험을 진행하였고, 토널 피쳐를 사용하였을 경우 감정인식 성능이 향상되는 것을 확인 할 수 있다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제2권2호
/
pp.122-126
/
2002
In this study, we find features of 3 emotions (Happiness, Angry, Surprise) as the fundamental research of emotion recognition. Speech signal with emotion has several elements. That is, voice quality, pitch, formant, speech speed, etc. Until now, most researchers have used the change of pitch or Short-time average power envelope or Mel based speech power coefficients. Of course, pitch is very efficient and informative feature. Thus we used it in this study. As pitch is very sensitive to a delicate emotion, it changes easily whenever a man is at different emotional state. Therefore, we can find the pitch is changed steeply or changed with gentle slope or not changed. And, this paper extracts formant features from speech signal with emotion. Each vowels show that each formant has similar position without big difference. Based on this fact, in the pleasure case, we extract features of laughter. And, with that, we separate laughing for easy work. Also, we find those far the angry and surprise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.