• Title/Summary/Keyword: Emotional Speech Recognition

Search Result 69, Processing Time 0.024 seconds

Emotional Recognition of speech signal using Recurrent Neural Network

  • Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.81.2-81
    • /
    • 2002
  • $\textbullet$ Introduction- Concept and meaning of the emotional Recognition $\textbullet$ The feature of 4-emotions $\textbullet$ Pitch(approach) $\textbullet$ Simulator-structure, RNN(learning algorithm), evaluation function, solution search method $\textbullet$ Result

  • PDF

The Comparison of Speech Feature Parameters for Emotion Recognition (감정 인식을 위한 음성의 특징 파라메터 비교)

  • 김원구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.470-473
    • /
    • 2004
  • In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.

  • PDF

Robust Speech Recognition Parameters for Emotional Variation (감정 변화에 강인한 음성 인식 파라메터)

  • Kim Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.655-660
    • /
    • 2005
  • This paper studied the feature parameters less affected by the emotional variation for the development of the robust speech recognition technologies. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. In this study, LPC cepstral coefficient, met-cepstral coefficient, root-cepstral coefficient, PLP coefficient, RASTA met-cepstral coefficient were used as a feature parameters. And CMS and SBR method were used as a signal bias removal techniques. Experimental results showed that the HMM based speaker independent word recognizer using RASTA met-cepstral coefficient :md its derivatives and CMS as a signal bias removal showed the best performance of $7.05\%$ word error rate. This corresponds to about a $52\%$ word error reduction as compare to the performance of baseline system using met - cepstral coefficient.

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

Multimodal Emotion Recognition using Face Image and Speech (얼굴영상과 음성을 이용한 멀티모달 감정인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 2012
  • A challenging research issue that has been one of growing importance to those working in human-computer interaction are to endow a machine with an emotional intelligence. Thus, emotion recognition technology plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between human and computer. In this paper, we propose the multimodal emotion recognition system using face and speech to improve recognition performance. The distance measurement of the face-based emotion recognition is calculated by 2D-PCA of MCS-LBP image and nearest neighbor classifier, and also the likelihood measurement is obtained by Gaussian mixture model algorithm based on pitch and mel-frequency cepstral coefficient features in speech-based emotion recognition. The individual matching scores obtained from face and speech are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. Through experimental results, the proposed method exhibits improved recognition accuracy of about 11.25% to 19.75% when compared to the most uni-modal approach. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.

A Study on Robust Emotion Classification Structure Between Heterogeneous Speech Databases (이종 음성 DB 환경에 강인한 감성 분류 체계에 대한 연구)

  • Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.477-482
    • /
    • 2009
  • The emotion recognition system in commercial environments such as call-center undergoes severe system performance degradation and instability due to the speech characteristic differences between the system training database and the input speech of unspecified customers. In order to alleviate these problems, this paper extends traditional method of emotion recognition of neutral/anger into two-step hierarchical structure by using emotional characteristic changes and differences of male and female. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance about 25% over the traditional method of emotion recognition.

Text-driven Speech Animation with Emotion Control

  • Chae, Wonseok;Kim, Yejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3473-3487
    • /
    • 2020
  • In this paper, we present a new approach to creating speech animation with emotional expressions using a small set of example models. To generate realistic facial animation, two example models called key visemes and expressions are used for lip-synchronization and facial expressions, respectively. The key visemes represent lip shapes of phonemes such as vowels and consonants while the key expressions represent basic emotions of a face. Our approach utilizes a text-to-speech (TTS) system to create a phonetic transcript for the speech animation. Based on a phonetic transcript, a sequence of speech animation is synthesized by interpolating the corresponding sequence of key visemes. Using an input parameter vector, the key expressions are blended by a method of scattered data interpolation. During the synthesizing process, an importance-based scheme is introduced to combine both lip-synchronization and facial expressions into one animation sequence in real time (over 120Hz). The proposed approach can be applied to diverse types of digital content and applications that use facial animation with high accuracy (over 90%) in speech recognition.

Emotion recognition in speech using hidden Markov model (은닉 마르코프 모델을 이용한 음성에서의 감정인식)

  • 김성일;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.21-26
    • /
    • 2002
  • This paper presents the new approach of identifying human emotional states such as anger, happiness, normal, sadness, or surprise. This is accomplished by using discrete duration continuous hidden Markov models(DDCHMM). For this, the emotional feature parameters are first defined from input speech signals. In this study, we used prosodic parameters such as pitch signals, energy, and their each derivative, which were then trained by HMM for recognition. Speaker adapted emotional models based on maximum a posteriori(MAP) estimation were also considered for speaker adaptation. As results, the simulation performance showed that the recognition rates of vocal emotion gradually increased with an increase of adaptation sample number.

  • PDF

Speech Emotion Recognition Using Confidence Level for Emotional Interaction Robot (감정 상호작용 로봇을 위한 신뢰도 평가를 이용한 화자독립 감정인식)

  • Kim, Eun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.755-759
    • /
    • 2009
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Especially, speaker-independent emotion recognition is a challenging issue for commercial use of speech emotion recognition systems. In general, speaker-independent systems show a lower accuracy rate compared with speaker-dependent systems, as emotional feature values depend on the speaker and his/her gender. Hence, this paper describes the realization of speaker-independent emotion recognition by rejection using confidence measure to make the emotion recognition system be homogeneous and accurate. From comparison of the proposed methods with conventional method, the improvement and effectiveness of proposed methods were clearly confirmed.