Purpose: During COVID-19, consumers prefer social distancing or contactless activities for safety, and hygienic condition has become one of the most important factors in evaluating restaurants. Therefore, this study aims to investigate whether offline/online word-of-mouth is affected by restaurant quality. Research design, data and methodology: The data were collected from 480 consumers who had experiences of visiting a restaurant in the past 90 days and analyzed with SPSS 28.0 and SmartPLS 4.0 programs. Results: Physical environment and menu had positively significant effects on brand love, while employee service and hygiene had no significance on brand love. Restaurant environment, menu, and hygiene had negatively significant effects on brand hate, but employee service had not significant impact on brand hate. Brand love had positively significant effects on offline and online word-of-mouth, and brand hate had negatively significant effects on offline and online word-of-mouth. Conclusions: First, restaurants need to develop a pleasant space where customers can have emotional experiences. Second, restaurants need to fulfill customers' desire for global food consumption. Third, restaurants should ensure hygiene and safety to prevent customers' brand hate. Lastly, restaurants need to establish offline/online word-of-mouth strategy to identify which restaurant quality attributes influence brand love/hate and offline/online word-of-mouth.
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.334-342
/
2022
Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.
Hyeon-seok Heo;Chung-hyeok Kim;Ki-ho Nam;Jin-sa Kim
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.36
no.3
/
pp.266-274
/
2023
Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.240-243
/
2021
Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.6-8
/
2022
Many systems that use images through object recognition using deep learning have provided various solutions beyond the existing methods. Many studies have proven its usability, and the actual control system shows the possibility of using it to make people's work more convenient. Many studies have proven its usability, and actual control systems make human tasks more convenient and show possible. However, with hardware-intensive performance, the development of models is facing some limitations, and the ease with the use and additional utilization of many unupdated models is falling. In this paper, we propose how to increase utilization and accuracy by providing additional information on the emotional regions of colors and objects by utilizing learning and weights from HSV color histograms of local image data recognized after conventional stereotyped object recognition results.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.87-89
/
2022
Recently, as more consumers spend more time at home due to COVID-19, the time spent on digital consumption such as SNS and OTT, which can be easily used non-face-to-face, naturally increased. Since 2019, when COVID-19 occurred, digital consumption has doubled from 44% to 82%, and it is important to quickly and accurately grasp and apply trends by analyzing consumers' emotions due to the rapidly changing digital characteristics. However, there are limitations in actually implementing services using emotional analysis in small systems rather than large-scale systems, and there are not many cases where they are actually serviced. However, if even a small system can easily analyze consumer trends, it will help the rapidly changing modern society. In this paper, we propose a lightweight trend analysis system that builds a learning network through Transfer Learning (Fine Tuning) of the BERT Model and interlocks Crawler for real-time data collection.
In this study, the importance of each design element was analyzed by surveying experts in the development of Agro-Healing Virtual Reality Therapy System. It was found that the results of experts content importance were consistent with the results of consumer preferences in previous studies, such as psychological and emotional stability as the main effect the importance of sight and hearing, a relatively short time of 30 minutes or less, a low price of 5,000 won or less, technical factors that can satisfy the five senses, and various contents. When the spatial elements of the Agro-Healing Virtual Reality Therapy System were categorized into three major categories: elements and equipment, lines and paths, and sites and spaces, 'flowers', 'playgrounds', 'paths', 'sidewalks', 'rest areas' and 'gardens' were found to be highly important. Among the components of Agro-Healing Virtual Reality Therapy System, the usability was divided into eight major categories, including searchability, attractiveness, cognition, error handling, control, consistency, convenience, and feedback, and the importance was analyzed for each component. The significance of this study is that it suggests the design direction of virtual healing farm systems and provides effective information that can be used in the development of related systems in the future.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.259-266
/
2023
In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.12
/
pp.3218-3241
/
2023
Financial fraud undermines the sustainable development of financial markets. Financial statements can be regarded as the key source of information to obtain the operating conditions of listed companies. Current research focuses more on mining financial digital data instead of looking into text data. However, text data can reveal emotional information, which is an important basis for detecting financial fraud. The audit opinion of the financial statement is especially the fair opinion of a certified public accountant on the quality of enterprise financial reports. Therefore, this research was carried out by using the data features of 4,153 listed companies' financial annual reports and audits of text opinions in the past six years, and the paper puts forward a financial fraud detection model integrating audit opinions. First, the financial data index database and audit opinion text database were built. Second, digitized audit opinions with deep learning Bert model was employed. Finally, both the extracted audit numerical characteristics and the financial numerical indicators were used as the training data of the LightGBM model. What is worth paying attention to is that the imbalanced distribution of sample labels is also one of the focuses of financial fraud research. To solve this problem, data enhancement and Focal Loss feature learning functions were used in data processing and model training respectively. The experimental results show that compared with the conventional financial fraud detection model, the performance of the proposed model is improved greatly, with Area Under the Curve (AUC) and Accuracy reaching 81.42% and 78.15%, respectively.
Jeong Kee-Sam;Lee Byung-Chae;Choi Whan-Seok;Kim Bom-Taeck;Woo Jong-Min;Lee Kwae-Hi;Kim Min
Science of Emotion and Sensibility
/
v.9
no.2
/
pp.111-118
/
2006
The purpose of the study is to examine the effects of the positive menial stress, eustress, on autonomic nervous system(ANS) and human health. For this, we analyzed heart rate variability(HRV) parameters, the most promising markers of ANS function to assess the changes of emotional and physiological states of human body. We measured HRV Signal of World Cup group(281 male subjects: $29.8{\pm}5.6yr$., 187 female subjects: $29.0{\pm}5.4yr$.) in two stadiums at least an hour before the game during '2002 FIFA World Cup Korea/Japan' event. We also measured control group's(331 male subjects: $30.9{\pm}4.7 yr$., 344 female subjects: $30.2{\pm}5.2 yr$.) in the health promotion centers in two university hospitals at least a month before and after the world cup event period. Considering physiological differences between males and females, the data analysis was applied to 'male group' and 'female group' separately. As a result, some tendency was observed that is different from what we have known as the stress reaction. In general, all parameter values except that of mean heart rate tend to decrease under stressed condition. However, under eustressed condition, both heart rate and standard deviation of the Normal to Normal intervals(SDNN) were higher then those of normal condition(p<0.05). Especially, in case of female group, contrary to distressed condition, every frequency-domain powers showed tile higher value(p<0.05, p<0.001). Considering that decrease of HRV indicates the loss of one's health, the increase of SDNN and frequency parameters means that homeostasis control mechanism of ANS is functioning positively. Accordingly, induction of eustress from international sports event may affect positively to the people's health.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.