In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.27
no.3
/
pp.207-215
/
2016
Objectives: This study aimed to investigate the differences in the facial emotion recognition and discrimination ability between children with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Fifty-three children aged 7 to 11 years participated in this study. Among them, 43 were diagnosed with ADHD and 10 with ASD. The parents of the participants completed the Korean version of the Child Behavior Checklist, ADHD Rating Scale and Conner's scale. The participants completed the Korean Wechsler Intelligence Scale for Children-fourth edition and Advanced Test of Attention (ATA), Penn Emotion Recognition Task and Penn Emotion Discrimination Task. The group differences in the facial emotion recognition and discrimination ability were analyzed by using analysis of covariance for the purpose of controlling the visual omission error index of ATA. Results: The children with ADHD showed better recognition of happy and sad faces and less false positive neutral responses than those with ASD. Also, the children with ADHD recognized emotions better than those with ASD on female faces and in extreme facial expressions, but not on male faces or in mild facial expressions. We found no differences in the facial emotion discrimination between the children with ADHD and ASD. Conclusion: Our results suggest that children with ADHD recognize facial emotions better than children with ASD, but they still have deficits. Interventions which consider their different emotion recognition and discrimination abilities are needed.
Objectives Schizophrenic patients have been shown to be impaired in both emotional self-awareness and recognition of others' facial emotions. Alexithymia refers to the deficits in emotional self-awareness. The relationship between alexithymia and recognition of others' facial emotions needs to be explored to better understand the characteristics of emotional deficits in schizophrenic patients. Methods Thirty control subjects and 31 schizophrenic patients completed the Toronto Alexithymia Scale-20-Korean version (TAS-20K) and facial emotion recognition task. The stimuli in facial emotion recognition task consist of 6 emotions (happiness, sadness, anger, fear, disgust, and neutral). Recognition accuracy was calculated within each emotion category. Correlations between TAS-20K and recognition accuracy were analyzed. Results The schizophrenic patients showed higher TAS-20K scores and lower recognition accuracy compared with the control subjects. The schizophrenic patients did not demonstrate any significant correlations between TAS-20K and recognition accuracy, unlike the control subjects. Conclusions The data suggest that, although schizophrenia may impair both emotional self-awareness and recognition of others' facial emotions, the degrees of deficit can be different between emotional self-awareness and recognition of others' facial emotions. This indicates that the emotional deficits in schizophrenia may assume more complex features.
Journal of the Korean Society for Precision Engineering
/
v.23
no.5
s.182
/
pp.68-76
/
2006
The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Hence this paper describes the realization of emotion recognition. For emotion recognition from voice, we propose a new feature called frequency range of meaningful signal. With this feature, we reached average recognition rate of 76% in speaker-dependent. From the experimental results, we confirm the usefulness of the proposed feature. We also define the noise environment and conduct the noise-environment test. In contrast to other features, the proposed feature is robust in a noise-environment.
Journal of information and communication convergence engineering
/
v.19
no.3
/
pp.148-154
/
2021
With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.2
/
pp.150-154
/
2006
In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.
An, Na Young;Lee, Ju Young;Cho, Sun Mi;Chung, Young Ki;Shin, Yun Mi
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.24
no.2
/
pp.83-89
/
2013
Objectives : It is known that children with attention-deficit hyperactivity disorder (ADHD) experience significant difficulty in recognizing facial emotion, which involves processing of emotional facial expressions rather than speech, compared to children without ADHD. This objective of this study is to investigate the differences in facial emotion recognition between children with ADHD and normal children used as control. Methods : The children for our study were recruited from the Suwon Project, a cohort comprising a non-random convenience sample of 117 nine-year-old ethnic Koreans. The parents of the study participants completed study questionnaires such as the Korean version of Child Behavior Checklist, ADHD Rating Scale, Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. Facial Expression Recognition Test of the Emotion Recognition Test was used for the evaluation of facial emotion recognition and ADHD Rating Scale was used for the assessment of ADHD. Results : ADHD children (N=10) were found to have impaired recognition when it comes to Emotional Differentiation and Contextual Understanding compared with normal controls (N=24). We found no statistically significant difference in the recognition of positive facial emotions (happy and surprise) and negative facial emotions (anger, sadness, disgust and fear) between the children with ADHD and normal children. Conclusion : The results of our study suggested that facial emotion recognition may be closely associated with ADHD, after controlling for covariates, although more research is needed.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.4
/
pp.494-500
/
2008
In the field of development of human interface technology, the interactions between human and machine are important. The research on emotion recognition helps these interactions. This paper presents an algorithm for emotion recognition based on personalized speech signals. The proposed approach is trying to extract the characteristic of speech signal for emotion recognition using PLP (perceptual linear prediction) analysis. The PLP analysis technique was originally designed to suppress speaker dependent components in features used for automatic speech recognition, but later experiments demonstrated the efficiency of their use for speaker recognition tasks. So this paper proposed an algorithm that can easily evaluate the personal emotion from speech signals in real time using personalized emotion patterns that are made by PLP analysis. The experimental results show that the maximum recognition rate for the speaker dependant system is above 90%, whereas the average recognition rate is 75%. The proposed system has a simple structure and but efficient to be used in real time.
Journal of the Institute of Convergence Signal Processing
/
v.12
no.4
/
pp.228-236
/
2011
Emotion recognition plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between humans and computer. Most of previous work on emotion recognition focused on extracting emotions from face, speech or EEG information separately. Therefore, a novel approach is presented in this paper, including face, speech and EEG, to recognize the human emotion. The individual matching scores obtained from face, speech, and EEG are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. In the experiment results, the proposed approach gives an improvement of more than 18.64% when compared to the most successful unimodal approach, and also provides better performance compared to approaches integrating two modalities each other. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.4
/
pp.256-261
/
2007
Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.