• Title/Summary/Keyword: Emitters

Search Result 306, Processing Time 0.028 seconds

Fabrication of CNT Flexible Field Emitters and Their Field Emission Properties

  • Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.384-384
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been studied as an ideal material for field emitters due to the high aspect ratio, excellent electrical property and good mechanical strength. There were many reports on CNT emitters fabricated on rigid substrates, but rare reports about CNT flexible field emitters. Recently, we considered that CNTs can be a good candidate for a flexible field emitter material because of their excellent Young's modulus and elasticity, which could not be achieved with metal tips or semiconducting nanowire tips. In this work, we demonstrated the CNT flexible field emitters fabricated by a simple method and studied the field emission properties of the CNT flexible field emitters under various bending conditions. The flexible field emitters showed stable and uniform emission characteristics. Especially, there is no remarkable change of the field emission properties at the CNT flexible field emitters according to the bending conditions. The CNT flexible field emitters also exhibited a good field emission performance like the low turn-on field and high emission current. Therefore, we suggest that the CNT flexible emitters can be used in many practical applications under different bending conditions.

  • PDF

Performance and Hydraulic Characteristics of Drip Emitters (점적 emitter 의 성능과 수리적 특성)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.33-40
    • /
    • 1999
  • Variations in the discharge rates of drip emittes were examined to find the effects of operation pressure and the tube length and to evaluate performance of the emitters. Several point-source emitters were selected such as pressure compensated, anti-leak pressure compensated, turbulent flow regulated, flow regulated, ready-made dripper, and spaghetti. Combination of operation pressure and tube length were compared. The microirrigatioon system was operated at pressures of 0.5 , 1.0 , 1.5 and 2.0 bar. The discharge from emitters wer collected at every ten meters along the lateral tube and weighted. In order to evaluate the drip emitters performance coeffcient of discharge variation , statistical uniformity, and emission uniformity were calculated. No significant variation in discharge along drip tube resulted with all emitters. There is no trend of variatiiono of discharge rate from pressure compensated emitters with increase in operation pressures. But discharge rate from other types of emitters increased with increase in operation pressures. The nominal discharge of each emitter was secured at pressure of 1.0 bar, Evaluation using statiscal and emission uniformity coefficients indicated that most of the emitters excepts tubulent flow regulated emitter and ready-made dripper performed at excellent level.

  • PDF

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Patterned free-standing diamond field emitters for iarge area field emission display applications

  • Kim, Sung-Hoon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • Using micro-wells on the Mo substrate, we could obtain various tubular-volcano-types of free-standing diamond field emitters by depositing a diamond film detaching the film and turning the film upside down. The field emission characteristics of these structures were investigated as a function of size, shape and the number density of the tubular-volcano-type diamond field emitters. The field emission characteristics, especially the current density, were greatly enhanced with increasing the number density of the tubular-volcano-type diamond field emitters on the Mo substrate. Based on these results, we suggest that the reduction of the well size can give better field emission characteristics by the increase in the number density of the tubular-volcano-type diamond field emitters. Finally, we suggest the feasibility of fabricating a large-area field emission display using our patterned tubular-volcano-type free-standing diamond field emitters.

  • PDF

One-step liquid-phase fabrication of adhesive and protective inorganic layer for carbon nanotube field emitters

  • Jeong, Hae-Deuk;Kim, Ho-Young;Jeong, Hee-Jin;Jeong, Seung-Yol;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.43-43
    • /
    • 2010
  • we have investigated the field emission characteristics of the CNT/TEOS hybrid thin films fabricated by a spray method. It is found that the CNT/TEOS hybrid emitters show high current density, low turn on field, and long-term emission stability compared to the CNT emitters. These efficient field emission characteristics of the CNT/TEOS hybrid emitters are attributed to the TEOS sol, acting as a protection layer of nanotube emitter by surrounding the nanotube tip as well as a binder material to enhance the adhesion of nanotube emitters to the substrate. Therefore, the CNT/TEOS hybrid emitters could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

Actively Addressable Carbon NanoTube Emitters for Field Emission Display

  • Song, Yoon-Ho;Hwang, Chi-Sun;Kim, Kwang-Bok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.194-197
    • /
    • 2003
  • The actively addressable carbon nanotube (CNT) emitters have been studied for stable and low-voltage driving field emission display (FED). The a-Si TFT and screen-printed CNT emitters were successfully integrated to fabricate the diode type active-matrix cathode and FED panel. Also, we propose a new FED architecture based on the actively controlled triode CNT emitters showing the properties of ideal triode type cathode with electron beam focusing effect.

  • PDF

Emission Profile Studies of Thermionic Cathodes and Field Emitters

  • Tawa, Yasuhiro;Kai, Junjiro;Tama, Masayoshi;Ijima, Kenji;Saito, Tsunenari
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.371-375
    • /
    • 2002
  • Emissions of thermionic cathodes and field emitters were studied using a cathode emission profiler which works based on the anode scanning method. Findings about impregnated cathodes in thermal activation and gas poisoning processes are shown. Effects of surface treatments for field emitters are studied from the viewpoint of emission profiles and characteristics of the emitters.

  • PDF

Electrostatic Interference Model of EHD Spraying from an Array of Cone Jets in Electrospray Micro-Thruster

  • Quang Tran Si Bui;Byun Do-Young;Kim Man-Young;Dat Nguyen Vu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.30-33
    • /
    • 2006
  • Onset voltage plays a crucial role in the design of a spray microthruster. This paper presents an analytical electrostatic model to predict the behavior of onset voltage in an array of emitters. The basic idea of this method is to superimpose the electric potentials obtained from each individual emitter in an array of emitters. The results show that if one emitter operates and the other neighboring emitters are dry, the potential required for cone-jet spraying generally increases as the emitter spacing decreases (due to electrical shielding). However at very close spacing the potential can decrease. If all emitters operate at the same time, the phenomenon that even at very close spacing the onset voltage required for cone-jet spraying increases merely as the emitter spacing decreases.

  • PDF

Study on Carbon Nano Fiber Emitter for Field Emission Lamp (전계방출광원용 카본나노파이버 에미터 연구)

  • Kim, Kwang-Bok;Lee, Sun-Hee;Yu, Seung-Ho;Kim, Dae-Jun;Kim, Yong-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.21-24
    • /
    • 2008
  • Properties of carbon nano fiber (CNF) as field emitters were described. Carbon nano fiber (CNF) of herringbone was prepared by thermal chemical vapor deposition(CVD). Field emitters mixed with organic binders, conductive materials and were prepared by screen-printing process. In order to increase field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNF emitters on cathode electrode. The measurements of field emission properties were carried out by using a diode structure inline vacuum chamber. CNF of herringbone type showed good emission properties that a turn on field was as low as 2.1 $V/{\mu}m$ and current density was as large as 0.15 $mA/cm^2$ of 4.2 $V/{\mu}m$ with electric field. Through the results. we propose that CNFs are suitable for application of electron emitters in Field Emission Devices.

  • PDF