• Title/Summary/Keyword: Emission Path

Search Result 107, Processing Time 0.031 seconds

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Energy Efficient Route Search Using Marine Data (해양 데이터를 활용한 에너지 효율적인 최적 항로 탐색)

  • Kim, Seong-Ho;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Recently, one of the major issues of shipbuilding and marine is the reduction of air and marine pollution emission to ships. In response, the International Maritime Organization (IMO) has concluded an international convention (MARPOL) to prevent pollution from ships. A Annex Six of The Convention restricts and regulates air and marine pollution of ship from exhausting gases. To this end, it is required to apply EEDI (Energy Efficiency Design Indicators) to the construction of new ships, and to minimize the emission of environmental pollutants by recommending the application of EEOI (Energy Efficiency Operation Indicators) to operational ships. Therefore, in this study, we propose to calculate the grade of operating efficiency (EG) of ships based on actual operational data for transport ships and to provide energy-efficient optimal path search information through analysis of marine environment data.

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions (페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석)

  • Cho, Hyeonah;Lee, Seungmin;Noh, Jun Hong
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Development of a Soil Distribution Method and Equipment Operation Models Using Worker's Heuristics (작업자의 휴리스틱을 적용한 토량배분 및 장비운영 모델 개발)

  • Lim, So-Young;Kim, Sung-Keun;Ahn, Seo-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.551-564
    • /
    • 2016
  • Earthworks are the fundamental steps in a construction job, and are mainly comprised of smaller tasks performed by construction machinery. The productivity of the construction job can be improved by optimizing excavation, filling, and other such operations. Earthworks involve a lot of mechanical work performed by the collaboration between various kinds of construction equipment, which in turn leads to higher fuel consumption. Actual earthworks depend mostly on the intuition and experience of the driver of the machines, thus leading to inefficiency and environmental problems caused by unnecessary emission of carbon, Recently automated and information-oriented technologies are consistently being researched towards the improvement of efficiency of earthworks in the construction industry. The present research involves the introduction and understanding of the decision-making elements of heuristics which can be applied to the earthwork planning. A method is also suggested for creating an effective work path for construction machine to perform task packages (TP) for cutting and filling processes. A simulation test is performed to verify the effectiveness of suggested methods in terms of space interference and total moving distance of construction equipment.

A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films (비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구)

  • ;;D. Mangalaraj
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

Analysis and Comparison of Estimation methods for Vehicle CO2 Emission (차량 CO2 배출량 추정 방법에 대한 비교 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.493-496
    • /
    • 2010
  • In this paper, We introduces 3 types of methods for estimation of a moving vehicle's CO2 emissions. These estimation methods include method based on distance traveled, method according to the calculation method proposed by the IPCC and method using vehicle information & chemical reaction equations. we describe the operating principle of each estimation method and we have driven down the actual road about 5km path because we compare performance of 3 types of methods for estimation of a driving vehicle's CO2 emissions.

  • PDF

Conductivity Change of PEDOT:PSS Film according to the Surface Structuring

  • Yu, Jung-Hoon;Nam, Sang-Hoon;Lee, Jin-Su;Hwang, Ki-Hwan;Seo, Hyeon-Jin;Ju, Dong-Woo;Jeon, So-Hyoun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.1-248.1
    • /
    • 2014
  • We present results from an experimental study of conductivity change of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) film according to the surface structuring. We demonstrate that the patterned structure was enhanced with approximately five times conductivity in comparison with non structure of PEDOT:PSS film. In order to patterning, we have fabricated polystyrene (PS) colloidal monolayer as a template with sphere diameter of 780nm and 1.8um. Structure has honeycomb shape and it provide shorter path way to flowing of electron. Pattern size was controlled by PS diameter and varied by Transformer Coupled Plasma (TCP) etching system. Conductivity was converted from sheet resistance which measured by 4-point prove. Film thickness was derived using Field Emission Scanning Electron Microscopy (FE-SEM) images.

  • PDF

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating (내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동)

  • Kang, Myung-Soo;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.