• Title/Summary/Keyword: Emission Influence Factors

Search Result 77, Processing Time 0.028 seconds

PM10 Emission Estimation from LNG G/T Power Plants and Its Important Analysis on Air Quality in Incheon Area (인천 지역 LNG G/T발전소의 미세먼지 (PM10) 배출량 평가 및 주변 대기질 영향 분석)

  • Gong, Bu-Ju;Park, Poong-Mo;Dong, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • Base on emission factors derived from National Institute of Environmental Research, Particulate matter from combined cycle power plants (CCPPs) has been estimated to be a important source of $PM_{10}$. Generally there is no serious emission of particulate matter in CCPPs. because the fuel of them is natural gas. But emission gas after long shut down season has very high dust content. Therefore $PM_{10}$ emission rate is dependent on its operation mode. In this study, particulate dispersion study for new city near CCPPs complex has performed using CALPUFF model for three case. $PM_{10}$ concentration has big difference between normal operation and 2 case start-up condition after long shutdown. In normal operating conditions, daily $0.32{\sim}0.50{\mu}g/m^3$ influence on of the surrounding area. But when 1~2 aerobic high concentration discharged conditions, average concentration is higher about $9.2{\sim}34.1{\mu}g/m^3$ than normal operating conditions.

An Experimental Study on the Performance Improvement and Emission Reduction in a Turbocharged D.I. Diesel Engine (과급식 디젤엔진의 성능개선 및 배기가스 저감에 관한 실험적 연구)

  • 윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-46
    • /
    • 2000
  • The performance improvement and emission reduction in a turbocharged D.I. diesel engine was studied experimentally in this paper. The system of intake port, fuel injection and turbochager are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, fuel injection system and turbocharger. The swirl ratio of intake port was modified by hand-working and measured by impulse swirl meter. Through this steady flow test, we knew that the increase of swirl ratio is decreasing the mean flow coefficient, whereas the gulf factor is increasing. And the optimum results of engine performance and emission are as follows; the swirl ratio is 2.43, injection timing is BTDC 13。 CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 AND turbine A/R 1.19.

  • PDF

A study on the effects of exhaust emission standards on the required ventilation rate in vehicle tunnels (차량 배출가스 규제기준이 소요환기량에 미치는 연구)

  • Kim, Hyo-Gyu;Ryu, Ji-Oh;Song, Seog-Hun;Jung, Chang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.409-420
    • /
    • 2017
  • The amount of ventilation required in making the tunnel ventilation plan is an important factor for determining the capacity of the ventilation system. The amount of pollutant emission for each type of vehicle (basic emission amount for the design of ventilation volume) for estimating the required ventilation amount is based on the 'Standard for Allowing the Emission for the car manufacturing', proposed by Ministry of Environment. However, in 2013, the Ministry of Environment announced the 'Regulations on the calculation method of total emissions from vehicles' as a regulation for calculating the pollutants emitted from vehicles. In this regulation, there are the 'Emission factors for each type of vehicle'. Therefore, it is necessary to review the application of the Regulation to the estimation of the required ventilation volume for the road tunnel. In this study, the influence of the strengthened emission regulation in 2015 caused by the case of manipulation of emission volume for the diesel vehicle on the calculation of the required ventilation volume in the road tunnel has been checked. In addition, in this study, the required ventilation volume calculated according to the Standard for Allowing the Emission for the car manufacturing revised by Ministry of Environment and "Emission factors for each type of vehicle" and that calculated according to the EURO emission standard were compared for analysis. This study has implications that it provides the basic design data for calculating the reasonable ventilation capacity of the ventilation system based on the ground for calculating the required ventilation volume.

Numerical simulation on gas continuous emission from face during roadway excavation

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Li, Xuelong;Kong, Xiangguo;Zhang, Zhibo
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • With the mining depth continuously increasing, gas emission behaviors become more and more complex. Gas emission is an important basis for choosing the method of gas drainage, gas controlling. Thus, the accurate prediction of gas emission is of great significance for coal mine. In this work, based on the sources of gas emission from the heading faces and the fluid-solid coupling process, we established a gas continuous dynamic emission model, numerically simulated and applied it to the engineering. The result was roughly consistent with the actual situation and shows the model is correct. We proposed the measures of reducing the excavation distance and borehole gas drainage based on the model. The measures were applied and the result shows the overproof problem of gas emission disappears. The model considered the influence factors of gas emission wholly, and has a wide applicability, promotional value. The research is of great significance for the controlling of gas disaster, gas drainage and pre-warning coal and gas outbursts based on gas emission anomaly at the heading face.

Numerical Study for the Design of Biogas-fired Low Emission Cyclone Incinerator (바이오 가스 소각용 저공해 사이클론 소각기 개발을 위한 수치 해석적 연구)

  • 전영남;김시욱;백원석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.401-410
    • /
    • 2002
  • Concerns for energy conservation, environmental pollution, and the fact that organic wastes account for a major portion of our waste materials, have created the interest of biogas, which usually contains about 60 to 70 percent methane, 30 to 40 percent carbon dioxide, and other gases, including ammonia, hydrogen sulfide, mercaptans and other noxious gases. Cyclone combustors are used for homing a wide range of fuels such as low calorific value gas, waste water, sludge. coal, etc. The 3-dimensional swirling flow, combustion and emission in a tangential inlet cyclone incinerator under different inlet conditions are simulated using a standard k-s turbulence model and ESCRS (Extended Simple Chemically-Reacting System) model. The commercial code Phoenics Ver.3.4 was used for the present work. The main parameters considered in this work are inlet velocity and air to fuel ratio. The results showed that the change of operating conditions had an influence on the shape and size of recirculation zones, mixture fraction and axial velocity which are important factors for combustion efficiency and emission behavior. The application of this kind of computer program seams to be promising as a potential tool for the optimum design of a cyclone combustor with low emission.

An Empirical Analysis on Correlation between Carbon Emission and Urban Spatial Structure (도시공간구조와 탄소배출량간 상관관계 실증 분석)

  • Ryu, Yoon-Jin;Sohn, Se-Hyoung;Kim, Do-Nyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.273-281
    • /
    • 2012
  • The government is carrying forward a sustainable development which reduces green-house gas and environmental pollution by preparing 'Low Carbon Green Development' policy basis as a new paradigm of national development. This study aims to understand the status of atmosphere contamination which Seoul has by finding correlation among social, economical indexes and carbon, the humanities and social characteristic materials which best express types of city and correlation and to suggest implications. According to the results of the analysis, first the carbon emission volume of Seoul recorded 0.56 ppm, Jongno, Jung-Gu, Kuro, Kangnam and Songpa were more than the average of Seoul and Kwangjin-Gu & Kangbuk-Gu, relative north east regions, Yeongdeungpo-Gu and Dongjak-Gu, south west regions showed lower CO occurrences. Second, according to the correlation and factor analysis, elements which affect CO emission volume of Seoul are largely represented by regional level, traffic level and development density level. Third, when the importance of influence factors based on the analyzed standard coefficient by a regression model, traffic and development density level were most important by recording traffic level (0.967), environmental level (0.385), regional level (0.530) and development density (0.561). Consequently, it was revealed that the traffic level most affected CO emission.

Factors Effecting the Strength & Durability of Geopolymer Binder: A Review (지오폴리머의 강도와 내구성에 영향을 미치는 요인에 대한 고찰)

  • On, Jeong-Kwon;Kim, Gyu-Yong;Sasui, Sasui;Lee, Yae-Chan;Eu, Ha-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.460-468
    • /
    • 2021
  • Owing to the production of conventional concrete/cement, the climate crises is increasing and is mainly caused greenhouse gas (GHG) emission into the environment by industrial process. To reduce the emission of GHG, and excessive consumption of energy, research on geopolymer binder is increasing as it is environmentally friendly compared to the conventional binders such as Portland cement. The research on improving the strength and durability of geopolymer cement becomes one of the trending researches. Generally, the strength and durability of geopolymer binders are improved by altering alkaline solution & its concentration, the precursor materials and curing temperature & time, which significantly influence the chemical composition and microstructure of geopolymer to which the strength and durability of geopolymers relies. This paper included the detailed discussion on the factors affecting the mechanical properties and durability of geopolymer binder and the influence of reaction mechanism on the strength and durability of geopolymer is also discussed in this paper.

The Noise Influence Assessment according to the Change of the Offset Type Print Machine's Power (옵셋 인쇄기계 동력규모 변화에 따른 소음 영향 평가)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Wooseok;Lee, Jaewon;Park, Hyungkyu;Kim, Samsu;Yun, Heekyung;Lee, Kyumok;Jung, Daekwan;Seo, Chungyoul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.682-686
    • /
    • 2014
  • Nowadays, the needs to revise the classification criteria for noise emission facilities have been suggested by the related industries. Because there existed many reasonable factors in the criteria regarding the noise emission facilities. And the noise emission facility classification criterion of the print machine changed from 50 HP to 100 HP in 2013. But the increasement of the noise emission facility classification criterion of the print machine can cause adverse effects like the bigger noise. So, in this paper, we measured the print machine's sound power level according to the changes of the print machine's power to assess the adverse effects. The measurement method applied with KS I ISO 9614-2(1996). The corelation between the sound power level and the power of print machines was analyzed by regression analysis. In this paper, we found that the sound power level of the print machines can increase about 1.3 dB in the condition of that the power of print machine increases from 50 HP to 100 HP. And we found that the sound power level of the print machines can increase about 1.0 dB for a increasement of 1,000 SPH(sheet per hour) of printing speed. The noise emission characteristics of print machine stuied in this paper will be useful to design the noise reduction plan in the future.

Influence of Driving Routes and Seasonal Conditions to Real-driving NOx Emissions from Light Diesel Vehicles (주행 경로 및 계절의 변화가 소형 경유차의 실제 주행 시 질소산화물 배출량에 미치는 영향)

  • Lee, Taewoo;Kim, Jiyoung;Park, Junhong;Jeon, Sangzin;Lee, Jongtae;Kim, Jeongsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.148-156
    • /
    • 2014
  • The objective of this study is to compare NOx emissions from light duty diesel vehicles measured from on-road tests that conducted under various driving routes and seasonal conditions. We measured real-driving NOx emissions using PEMS, portable emissions measurement system, under the urban, rural and motorway road traffic conditions. On-road tests were repeated at summer, fall and winter season. The accumulated driving distance is more than 1,200 km per each vehicle. Route average NOx emission factors were compared among nine route-season combinations. The emission characteristics of each combinations were investigated using time series mass emission rates and vehicle operation-based emission rates and activities, which is based on U.S. EPA's MOVES model. Most concerned route-season combination is "urban road condition at summer", which shows two to eleven times higher NOx emissions than other combinations. The emission rates and activities under low speed operating conditions should be managed in order to reduce urban-summer NOx. From a NOx control strategy perspective, the exhaust gas recirculation, EGR, is observed to be properly operated under wide range of vehicle driving conditions in Euro-5 vehicles, even if the air conditioner turns on. In high power demanding conditions, the effect of overspeeding could be more critical than that of air conditioner activation.

Measurement of Nitrous Oxide Emissions on the Cultivation of Soybean by No-Tillage and Conventional-Tillage in Upland Soil

  • Yoo, Gil-Ho;Kim, Deok-Hyun;Yoo, Jin;Yang, Jong-Ho;Kim, Sang-Woo;Park, Ki-Do;Kim, Min-Tae;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.610-617
    • /
    • 2015
  • The impact of 1 pound of nitrous oxide ($N_2O$) on warming the atmosphere is almost 310 times that of 1 pound of carbon dioxide. Agricultural soil management is the largest source of $N_2O$ emissions, accounting for about 73% of total $N_2O$ emissions. This study was conducted to evaluate the nitrous oxide emission in the cultivation of soybean during the first year of No-tillage (NT) and Conventional-tillage (CT) practices, under the various conditions such as different kinds of fertilizers, soil temperature, and moisture level. In the experiment, we set CT and NT treatments into 4 different groups - control treatments (no fertilization), green manure treatments, chemical fertilizer treatments and organic manure treatments. In the case of chemical fertilizer treatments, $N_2O$ emission of NT treatment was 7.78 to 22.59% lower than CT treatment. In organic manure treatment, $N_2O$ emission of NT treatment was 6.62% higher than CT treatment in August. But In July and September, $N_2O$ emission of NT treatment was 9.50% 28.38% lower than CT treatment, respectively. Soil temperature was correlated with $N_2O$ emission positively. In the future, continued long-term research on influence of various environmental factors on the generation of $N_2O$ and the economic value of no-till farming is required.