DOI QR코드

DOI QR Code

Factors Effecting the Strength & Durability of Geopolymer Binder: A Review

지오폴리머의 강도와 내구성에 영향을 미치는 요인에 대한 고찰

  • On, Jeong-Kwon (Mooyong CM) ;
  • Kim, Gyu-Yong (Department of Architectural Engineering, Chungnam National University) ;
  • Sasui, Sasui (Department of Architectural Engineering, Chungnam National University) ;
  • Lee, Yae-Chan (Department of Architectural Engineering, Chungnam National University) ;
  • Eu, Ha-Min (Department of Architectural Engineering, Chungnam National University)
  • 온정권 (무영CM 건축사사무소) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 사수이 (충남대학교 건축공학과) ;
  • 이예찬 (충남대학교 건축공학과) ;
  • 유하민 (충남대학교 건축공학과)
  • Received : 2021.09.29
  • Accepted : 2021.10.06
  • Published : 2021.12.30

Abstract

Owing to the production of conventional concrete/cement, the climate crises is increasing and is mainly caused greenhouse gas (GHG) emission into the environment by industrial process. To reduce the emission of GHG, and excessive consumption of energy, research on geopolymer binder is increasing as it is environmentally friendly compared to the conventional binders such as Portland cement. The research on improving the strength and durability of geopolymer cement becomes one of the trending researches. Generally, the strength and durability of geopolymer binders are improved by altering alkaline solution & its concentration, the precursor materials and curing temperature & time, which significantly influence the chemical composition and microstructure of geopolymer to which the strength and durability of geopolymers relies. This paper included the detailed discussion on the factors affecting the mechanical properties and durability of geopolymer binder and the influence of reaction mechanism on the strength and durability of geopolymer is also discussed in this paper.

이산화탄소 및 온실가스의 배출, 과도한 에너지 소비 및 천연자원의 고갈을 막기 위해 콘크리트의 대체재를 찾는 것은 건설업의 해결과제이다. 이러한 문제를 해결하기 위해, 콘크리트보다 환경친화적인 지오폴리머가 주목을 받고 있으며, 실제 시공을 목적으로 강도 및 내구성에 대한 연구가 진행되고 있다. 일반적으로, 지오폴리머의 강도 및 내구성은 알칼리 용액의 종류 및 농도, 전구물질, 양생 온도 및 시간 등 여러 요인에 따라 달라지며, 이는 지오폴리머의 강도와 내구성에 영향을 미치는 화학조성 및 미세구조에 큰 영향을 미친다. 기존의 연구에서 최적의 알칼리 용액의 종류 및 농도, 전구물질, 양생 온도 및 시간을 통하여 지오폴리머의 압축강도 및 내구성이 향상되는 것을 확인하였으며, 본 연구에서는 과거의 연구 결과를 검토하고 이러한 요인이 지오폴리머의 압축강도 및 내구성에 미치는 영향을 체계적으로 종합하였다.

Keywords

Acknowledgement

이 논문은 2015년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No.2015R1A5A1037548).

References

  1. Abdul Rahim, R.H., Rahmiati, T., Azizli, K.A., Man, Z., Nuruddin, M.F., Ismail, L. (2015). Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties, Materials Science Forum, 803, 179-184. https://doi.org/10.4028/www.scientific.net/MSF.803.179
  2. Al Bakria, A.M., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers, Physics Procedia, 22, 286-291. https://doi.org/10.1016/j.phpro.2011.11.045
  3. Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cement and Concrete Research, 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
  4. Bortnovsky, O., Dedecek, J., Tvaruzkova, Z., Sobalik, Z., Subrt, J. (2008). Metal ions as probes for characterization of geopolymer materials, Journal of the American Ceramic Society, 91(9), 3052-3057. https://doi.org/10.1111/j.1551-2916.2008.02577.x
  5. Breck, D.W., Breck, D.W. (1973). Zeolite molecular sieves: structure, chemistry, and use, John Wiley & Sons.
  6. Chindaprasirt, P., Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site, Construction and Building Materials, 63, 303-310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  7. Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites, 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
  8. Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  9. Davidovits, J. (2002). Years of successes and failures in geopolymer applications. Market trends and potential breakthroughs, Geopolymer 2002 Conference Saint-Quentin, France; Melbourne, Australia: Geopolymer Institute, 28, 29.
  10. Davidovits, J. (2011). Calcium based geopolymer, Geopolymer Chemistry and Applications, 3rd ed., Geopolymer Institute, Saint Quentin, France, 201-244.
  11. Diaz, E.I., Allouche, E.N., Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers, Fuel, 89(5), 992-996. https://doi.org/10.1016/j.fuel.2009.09.012
  12. Duxson, P.S.W.M., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S. (2007). The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044
  13. Elyamany, H.E., Abd Elmoaty, M., Elshaboury, A.M. (2018). Magnesium sulfate resistance of geopolymer mortar, Construction and Building Materials, 184, 111-127. https://doi.org/10.1016/j.conbuildmat.2018.06.212
  14. Fang, G., Ho, W.K., Tu, W., Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature, Construction and Building Materials, 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008
  15. Gunasekara, C., Bhuiyan, S., Law, D., Setunge, S., Ward, L. (2017). Corrosion resistance in different fly ash based geopolymer concretes, HPC/CIC Tromso; Norway.
  16. He, J., Jie, Y., Zhang, J., Yu, Y., Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cement and Concrete Composites, 37, 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  17. Jamieson, E., McLellan, B., Van Riessen, A., Nikraz, H. (2015). Comparison of embodied energies of ordinary portland cement with bayer-derived geopolymer products, Journal of Cleaner Production, 99, 112-118. https://doi.org/10.1016/j.jclepro.2015.03.008
  18. Kani, E.N., Allahverdi, A. (2009). Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan, Ceramics-Silikaty, 53(3), 195-204.
  19. Kani, E.N., Allahverdi, A., Provis, J.L. (2012). Efflorescence control in geopolymer binders based on natural pozzolan, Cement and Concrete Composites, 34(1), 25-33. https://doi.org/10.1016/j.cemconcomp.2011.07.007
  20. Leung, C.K., Pheeraphan, T. (1995). Very high early strength of microwave cured concrete, Cement and Concrete Research, 25(1), 136-146. https://doi.org/10.1016/0008-8846(94)00121-E
  21. Li, Q., Sun, Z., Tao, D., Xu, Y., Li, P., Cui, H., Zhai, J. (2013). Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer, Journal of Hazardous Materials, 262, 325-331. https://doi.org/10.1016/j.jhazmat.2013.08.049
  22. Lloyd, R.R., Provis, J.L., Van Deventer, J.S. (2010). Pore solution composition and alkali diffusion in inorganic polymer cement, Cement and Concrete Research, 40(9), 1386-1392. https://doi.org/10.1016/j.cemconres.2010.04.008
  23. Manz, O.E. (1999). Coal fly ash: a retrospective and future look, Fuel, 78(2), 133-136. https://doi.org/10.1016/S0016-2361(98)00148-3
  24. Memon, F.A., Nuruddin, M.F., Demie, S., Shafiq, N. (2011). Effect of curing conditions on strength of fly ash-based self-compacting geopolymer concrete, International Journal of Civil and Environmental Engineering, 5(8), 342-345.
  25. Naik, T.R. (2008). Sustainability of concrete construction, Practice Periodical on Structural Design and Construction, 13(2), 98-103. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:2(98)
  26. Naik, T.R., Kraus, R.N. (1999). The role of flowable slurry in sustainable developments in civil engineering, Materials and Construction: Exploring the Connection, ASCE, 826-834.
  27. Nazari, A., Khalaj, G., Riahi, S. (2013). Retracted Aricle: ANFIS-based prediction of the compressive strength of geopolymers with seeded fly ash and rice husk-bark ash, Neural Computing and Applications, 22(3), 689-701. https://doi.org/10.1007/s00521-011-0751-y
  28. Neupane, G., Donahoe, R.J. (2013). Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests, Fuel, 104, 758-770. https://doi.org/10.1016/j.fuel.2012.06.013
  29. Neupane, K. (2016). Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of portland cement in concrete industry, Mechanics of Materials, 103, 110-122. https://doi.org/10.1016/j.mechmat.2016.09.012
  30. Nomura, Y., Fujiwara, K., Terada, A., Nakai, S., Hosomi, M. (2010). Prevention of lead leaching from fly ashes by mechanochemical treatment, Waste Management, 30(7), 1290-1295. https://doi.org/10.1016/j.wasman.2009.11.025
  31. Nurruddin, M.F., Sani, H., Mohammed, B.S., Shaaban, I. (2018). Methods of curing geopolymer concrete: a review, International Journal of Advanced and Applied Sciences, 5(1), 31-36. https://doi.org/10.21833/ijaas.2018.01.005
  32. Ouellet-Plamondon, C., Habert, G. (2015). Life cycle assessment(LCA) of alkali-activated cements and concretes, Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, 663-686.
  33. Palomo, A., Grutzeck, M.W., Blanco, M.T. (1999). Alkali-activated fly ashes: a cement for the future, Cement and Concrete Research, 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  34. Panagiotopoulou, C., Kontori, E., Perraki, T., Kakali, G. (2007). Dissolution of aluminosilicate minerals and by-products in alkaline media, Journal of Materials Science, 42(9), 2967-2973. https://doi.org/10.1007/s10853-006-0531-8
  35. Patankar, S.V., Ghugal, Y.M., Jamkar, S.S. (2014). Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar, Indian Journal of Materials Science, 2014.
  36. Purbasari, A., Samadhi, T.W., Bindar, Y. (2018). The effect of alkaline activator types on strength and microstructural properties of geopolymer from co-combustion residuals of bamboo and kaolin, Indonesian Journal of Chemistry, 18(3), 397-402. https://doi.org/10.22146/ijc.26534
  37. Rashad, A.M., Zeedan, S.R. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load, Construction and Building Materials, 25(7), 3098-3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044
  38. Sasui, S., Kim, G., Nam, J., van Riessen, A., Hadzima-Nyarko, M. (2021). Effects of waste glass as a sand replacement on the strength and durability of fly ash/GGBS based alkali activated mortar, Ceramics International.
  39. Satpute Manesh, B., Wakchaure Madhukar, R., Patankar Subhash, V. (2012). Effect of duration and temperature of curing on compressive strength of geopolymer concrete, Int. J. Eng. Innov. Technol, 1(5), 152-155.
  40. Schmucker, M., MacKenzie, K.J. (2005). Microstructure of sodium polysialate siloxo geopolymer, Ceramics International, 31(3), 433-437. https://doi.org/10.1016/j.ceramint.2004.06.006
  41. Skvara, F., Kopecky, L., Nemecek, J., Bittnar, Z.D.E.N.I.K. (2006). Microstructure of geopolymer materials based on fly ash, Ceramics-Silikaty, 50(4), 208-215.
  42. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel, 90(6), 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
  43. Sukmak, P., De Silva, P., Horpibulsuk, S., Chindaprasirt, P. (2015). Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer, Journal of Materials in Civil Engineering, 27(5), 04014158. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001112
  44. Xu, H., Van Deventer, J.S.J. (2000). The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
  45. Yahya, Z., Abdullah, M.M.A.B., Hussin, K., Ismail, K.N., Razak, R.A., Sandu, A.V. (2015). Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash(Si+ Ca) geopolymerisation system, Materials, 8(5), 2227-2242. https://doi.org/10.3390/ma8052227
  46. Yang, T., Yao, X., Zhang, Z. (2014). Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure, Construction and Building Materials, 59, 188-194. https://doi.org/10.1016/j.conbuildmat.2014.01.038
  47. Yang, T., Yao, X., Zhang, Z., Wang, H. (2012). Mechanical property and structure of alkali-activated fly ash and slag blends, Journal of Sustainable Cement-Based Materials, 1(4), 167-178. https://doi.org/10.1080/21650373.2012.752621
  48. Yip, C.K., Lukey, G.C., Van Deventer, J.S. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042
  49. Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M. (2014). Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134, 315-325. https://doi.org/10.1016/j.fuel.2014.05.058
  50. Zhang, Z.H., Zhu, H.J., Zhou, C.H., Wang, H. (2016). Geopolymer from kaolin in China: an overview, Applied Clay Science, 119, 31-41. https://doi.org/10.1016/j.clay.2015.04.023