• 제목/요약/키워드: Emerging virus

검색결과 102건 처리시간 0.023초

Potential harmful effects of viral hemorrhagic septicemia virus in mammals

  • Ho, Diem Tho;Kim, Nameun;Yun, Dongbin;Kim, Ki-Hong;Kim, Jae-Ok;Jang, Gwang Il;Kim, Do-Hyung
    • Fisheries and Aquatic Sciences
    • /
    • 제25권6호
    • /
    • pp.320-326
    • /
    • 2022
  • Most of the emerging diseases that threaten humans are caused by RNA viruses which are extremely mutable during evolution. The fish RNA virus, viral hemorrhagic septicemia virus (VHSV) can infect a broad range of aquatic animal hosts, but the transmissibility of VHSV to mammals has not been thoroughly investigated. Therefore, our study aimed to investigate the potential adverse effects of VHSV in mammals. Briefly, the survival of VHSV was determined using only minimum essential media (MEM-2) and mammalian SNU-1411 and hepa-1c1c7s cells at 15℃ and 37℃. Mice (Mus musculus, 27.3 ± 1.9 g) were intravenously injected with VHSV (2.37E+05 TCID50·mice-1) in triplicate. Clinical signs and survival rates were examined at 14 days post-challenge, and infection was confirmed in the surviving mice. The 50% tissue culture infective dose (TCID50) and polymerase chain reaction analysis were used to determine viral titers and the infection rate, respectively. The titer of VHSV suspended in MEM-2 at 15℃ was reduced by only one log after 8 days, whereas the virus maintained at 37℃ was inactivated 8 days post-inoculation (dpi). There were no recognizable cytopathic effects in either SNU-1411 or hepa-1c1c7s cells inoculated with VHSV at 15℃ and 37℃. VHSV in those cell lines at 37℃ was rapidly decreased and eventually inactivated at 12 dpi, whereas virus at 15℃ remained at low concentrations without replication. In vivo experiment showed that there were no signs of disease, mortality, or infection in VHSV-infected mice. The results of this study indicate that it is highly unlikely that VHSV can infect mammals including humans.

Occurrence and Multiplex PCR Detection of Citrus Yellow Vein Clearing Virus in Korea

  • Taemin Jin;Ji-Kwang Kim;Hee-Seong Byun;Hong-Soo Choi;Byeongjin Cha;Hae-Ryun Kwak;Mikyeong Kim
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.125-138
    • /
    • 2024
  • Citrus yellow vein clearing virus (CYVCV) is a member of the Alphaflexiviridae family that causes yellow vein clearing symptoms on citrus leaves. A total of 118 leaf samples from nine regions of six provinces in Korea were collected from various citrus species in 2020 and 2021. Viral diagnosis using next-generation sequencing and reverse transcription polymerase chain reaction (RT-PCR) identified four viruses: citrus tristeza virus, citrus leaf blotch virus, citrus vein enation virus, and CYVCV. A CYVCV incidence of 9.3% was observed in six host plants, including calamansi, kumquat, Persian lime, and Eureka lemon. Among the citrus infected by CYVCV, only three samples showed a single infection; the other showed a mixed infection with other viruses. Eureka lemon and Persian lime exhibited yellow vein clearing, leaf distortion, and water-soak symptom underside of the leaves, while the other hosts showed only yellowing symptoms on the leaves. The complete genome sequences were obtained from five CYVCV isolates. Comparison of the isolates reported from the different geographical regions and hosts revealed the high sequence identity (95.2% to 98.8%). Phylogenetic analysis indicated that all the five isolates from Korea were clustered into same clade but were not distinctly apart from isolates from China, Pakistan, India, and Türkiye. To develop an efficient diagnosis system for the four viruses, a simultaneous detection method was constructed using multiplex RT-PCR. Sensitivity evaluation, simplex RT-PCR, and stability testing were conducted to verify the multiplex RT-PCR system developed in this study. This information will be useful for developing effective disease management strategies for citrus growers in Korea.

The Role of Information and Communication Technology to Combat COVID-19 Pandemic: Emerging Technologies, Recent Developments and Open Challenges

  • Arshad, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.93-102
    • /
    • 2021
  • The world is facing an unprecedented economic, social and political crisis with the spread of COVID-19. The Corona Virus (COVID-19) and its global spread have resulted in declaring a pandemic by the World Health Organization. The deadly pandemic of 21st century has spread its wings across the globe with an exponential increase in the number of cases in many countries. The developing and underdeveloped countries are struggling hard to counter the rapidly growing and widespread challenge of COVID-19 because it has greatly influenced the global economies whereby the underdeveloped countries are more affected by its devastating impacts, especially the life of the low-income population. Information and Communication Technology (ICT) were particularly useful in spreading key emergency information and helping to maintain extensive social distancing. Updated information and testing results were published on national and local government websites. Mobile devices were used to support early testing and contact tracing. The government provided free smartphone apps that flagged infection hotspots with text alerts on testing and local cases. The purpose of this research work is to provide an in depth overview of emerging technologies and recent ICT developments to combat COVID-19 Pandemic. Finally, the author highlights open challenges in order to give future research directions.

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

Experimental Models for SARS-CoV-2 Infection

  • Kim, Taewoo;Lee, Jeong Seok;Ju, Young Seok
    • Molecules and Cells
    • /
    • 제44권6호
    • /
    • pp.377-383
    • /
    • 2021
  • Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.

Editorial : COVID-19 infection and ginseng: Predictive influenza virus strains and non-predictive COVID-19 vaccine strains

  • Dong-Kwon Rhee
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.347-348
    • /
    • 2023
  • Vaccines help protect people from infections. However, Coronavirus 2019 (COVID-19) vaccinees often still become infected with COVID-19 variants (breakthrough infections) and may go on to suffer from long COVID symptoms due to short-lasting immunity and less-effective protection provided by available vaccines. Moreover, the current COVID-19 vaccines do not prevent viral transmission and ward off only about 15% of breakthrough infections. To prepare more effective vaccines, it is essential to predict the viral strains that will be circulating based on available epidemiological data. The World Health Organization recommends in advance which influenza strains are expected to be prevalent during influenza season to guide the production of influenza vaccines by pharmaceutical companies. However, future emerging COVID-19 strain(s) have not been possible to predict since no sound epidemiological information has been established. Thus, for more effective protection, immune stimulators alone or in combination with vaccines would be preferable to protect people from COVID-19 infection. One of those remedies would be ginseng, which has been used for potentiating immunity in the past.

Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy

  • Liu, Jida;Seol, Dai-Wu
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.565-575
    • /
    • 2020
  • Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.

A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus

  • Bang, Bongjun;Lee, Jongyun;Kim, Sunyoung;Park, Jungwook;Nguyen, Thao Thi;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.310-315
    • /
    • 2014
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is responsible for one of the most devastating viral diseases in tomato-growing countries and is becoming a serious problem in many subtropical and tropical countries. The climate in Korea is getting warmer and developing subtropical features in response to global warming. These changes are being accompanied by TYLCV, which is now becoming a large problem in the Korean tomato industry. The most effective way to reduce damage caused by TYLCV is to breed resistant varieties of tomatoes. To accomplish this, it is necessary to establish a simple inoculation technique for the efficient evaluation of resistance to TYLCV. Here, we present the rolling circle amplification (RCA) method, which employs a bacteriophage using phi-29 DNA polymerase for construction of infectious TYLCV clones. The RCA method is simple, does not require sequence information for cloning, and is less expensive and time consuming than conventional PCR based-methods. Furthermore, RCA-based construction of an infectious clone can be very useful to other emerging and unknown geminiviruses in Korea.

2016년에서 2018년에 국내 말 인플루엔자 백신 접종 후 항체 양성률 (Antibody responses after vaccination against equine influenza in Korea in 2016-2018)

  • 조민수;이주연;이상규;송재영;이지현;현방훈;조수동;우인옥
    • 대한수의학회지
    • /
    • 제59권3호
    • /
    • pp.151-155
    • /
    • 2019
  • Equine influenza (EI) is the main cause of respiratory illness in equines across the globe and is caused by equine influenza A virus (EIV-A), which has impacted the equine industry internationally because of the marginal mortality and high morbidity. In the present study, the immune responses after equine influenza vaccination were evaluated in 4,144 horses in Korea using the hemagglutination inhibition (HI) assay. The equine influenza virus (EIV), A/equine/South Africa/4/03 (H3N8), was used as the antigen in the HI assay. The mean seropositive rates were 89.2% (97.4% in 2016, 77.6% in 2017, and 92.4% in 2018). This paper highlights the advances in understanding the effects of vaccines and control strategies for mitigating the emerging menace by EIV.

Dispensable role of wild rodents in avian influenza A virus transmission in Gyeonggi province, Korea

  • Chung-Young Lee;Ilhwan Kim;Hyuk-Joon Kwon
    • 대한수의학회지
    • /
    • 제64권2호
    • /
    • pp.13.1-13.6
    • /
    • 2024
  • Avian influenza A viruses (IAVs) present significant threats to both animal and human health through their potential for cross-species transmission and global spread. Clade 2.3.4.4 H5Nx highly pathogenic avian IAVs initially emerged in East Asia between 2013 and 2014. Since then, they have spread to Europe, Africa, and America via migratory bird flyways. However, beyond viral transmission primarily facilitated by migratory birds, the potential involvement of other intermediate factors for virus transmission remains poorly investigated. This study aimed to investigate the role of wild rodents as intermediary hosts in the ecology of avian IAVs in Gyeonggi province, South Korea. By capturing and analyzing 189 wild rodents near poultry farms and migratory bird habitats in 2013 and 2014 and employing serological assays and virus isolation techniques, we found no evidence of IAV infection among these populations. Our results suggest that wild rodents may not significantly contribute to the transmission dynamics of IAVs within these regions.