• 제목/요약/키워드: Emergency Power Generation

검색결과 80건 처리시간 0.028초

부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용 (A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant)

  • 차경호;김정택
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

비상발전용 UPS 기능을 갖춘 도시철도용 복합형 전력저장시스템 개발 (Development of Hybrid Power Storage System for Urban Railway with UPS Function for Emergency Power Generation)

  • 홍경진
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.191-196
    • /
    • 2019
  • 도시철도 시설물의 경우, 대중교통의 특성상 전력공급이 차단되면 혼란이 발생하므로 통신설비, 방재설비 및 승차장 안전문 등이 안전한 승객의 이동을 위해 전원공급이 유지되어야 한다. 또한, 도시철도 운행노선에는 다수의 전동차가 운행 중이므로 운행 간격과 시설복구 시간을 고려하면 승차장 안전문은 최소 30분 이상, 통신설비 및 방재설비는 1시간 이상의 설비가동이 요구된다. 따라서 도시철도 구간의 역사나 차량화재발생 시 화재로 인한 추가확산을 막기 위해 주요전력이 차단되므로 유도등 및 배연설비의 안정적 동작 유지를 위해 비상 전원공급이 필수적이다. 최근에는 비상시 정전을 방지하는 UPS (uninterruptible power supply, 무정전 전원공급장치) 기능과 가격이 저렴한 야간 시간대에 전기를 저장하였다가 주간 피크시간대에 사용할 수 있도록 하여 전기요금을 절감해주는 ESS 기능을 합친 비상발전용 UPS 기능을 갖춘 복합형 전력저장시스템을 개발하는 추세이다.

Preventive and Emergency Control of Power System for Transient Stability Enhancement

  • Siddiqui, Shahbaz A.;Verma, Kusum;Niazi, K.R.;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.83-91
    • /
    • 2015
  • This paper presents preventive and emergency control measures for on line transient stability (security) enhancement. For insecure operating state, generation rescheduling based on a real power generation shift factor (RPGSF) is proposed as a preventive control measure to bring the system back to secure operating state. For emergency operating state, two emergency control strategies namely generator shedding and load shedding have been developed. The proposed emergency control strategies are based on voltage magnitudes and rotor trajectories data available through Phasor Measurement Units (PMUs) installed in the systems. The effectiveness of the proposed approach has been investigated on IEEE-39 bus test system under different contingency and fault conditions and application results are presented.

HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발 (Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source)

  • 신동철;전지환;박성진;이동명
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

피크부하용 혼소엔진발전의 경제성 분석 (An Economic Analysis on Dual-fuel Engine Generation for Peak Load)

  • 이옥배;안재경
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1260-1268
    • /
    • 2012
  • Recently, lack of power reserve margin was observed quite often. In this paper, we studied the method to secure power source for a short time, to cut the utility power peak load, and to reduce the users electricity bills. Emergency diesel generator of an office building is to be converted into a dual-fuel engine generator which is responsible for a portion of the peak load. Compared to the conventional diesel fuel generator, the proposed dual-fuel engine is able to reduce the generation power cost by dual-fuel combustion, and it also mitigates the building's utility power peak load by charging the building's peak load. If the dead resources (a group of emergency dual-fuel engine generators), as a Virtual Power Plant, are operating in peak time, we can significantly reduce future large power development costs. We investigated the current general purpose electricity bills as well as the records of the building electric power usage, and calculated diesel engine generator renovation costs, generation fuel costs, driving conditions, and savings in electricity bills. The proposed dual-fuel engine generation method reduces 18.1% of utility power peak load, and turned out to be highly attractive investment alternative which shows more than 27% of IRR, 76 million won of NPV, and 20~53 months of payback periods. The results of this study are expected to be useful to developing the policy & strategy of the energy department.

건축물의 비상전원 적용실태 및 자가발전설비의 안전 운전 모델에 관한 연구 (Analysis on Emergency Power Supplies in Buildings and a Model for Safe Operation of the Emergency Power System)

  • 이원강;최충석
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.49-56
    • /
    • 2012
  • The purpose of this paper is to present a model for operating an emergency power system(EPS) that can secure a sufficient power supply used in case of a fire by analyzing the status of power supplies for emergency and firefighting operations. Investigations on the one of the causes of the operational failure of firefighting systems show evidence of EPS. Generally, when power to a building is interrupted, EPS supplies the emergency load(excepted firefighting load) first. When a power outage and a fire occur simultaneously, the EPS must be able to supply both the emergency load and the firefighting load, especially the firefighting load to the end. However, in order to save construction costs, emergency power generators in apartment, commercial, and business buildings can satisfy only one of the required loads. In cases like this, when a power outage and a fire occur simultaneously, there is a danger of firefighting equipment not operating due to insufficient power supply from the emergency generator. Therefore, an EPS must have a reserved firefighting power that can supply both the firefighting and the emergency load. Such EPS, when faced with a danger of an overload, will shut down the supply to all or part of the emergency load, thus securing a continuous power supply to the firefighting equipment. The generator power system with reserved firefighting power (RFP) will also have an indicator to show that the selective control is being used. General power generation systems for emergency load and firefighting load were found to have a demand factor of 50-60% with a lump. However, when installing an EPS, the builders must choose the higher demand factor suggested according to the official approval demand factor of the building.

비상발전용 전원으로 사용하기 위한 태양전지의 PSPICE 모델링 (PSPICE Modeling of Solar Cells for Use in Emergency Power System)

  • 백동현;송호빈
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.52-57
    • /
    • 2010
  • 비상발전용 전원으로 많이 사용되고 있는 전동기시스템은 비상 발전 시 외에는 거의 사용하지 않고 있어 비효율적이다. 반면에, 태양광 발전시스템을 이용하면 평상시 전력을 저장하여 계통 연계형 시스템으로 사용할 수 있어 많은 활용도가 있다. 본 논문에서는 범용 시뮬레이터인 PSPICE를 이용하여 시뮬레이션을 수행 할 수 있도록 PV시스템에 사용되는 각종 모델들을 라이브러리화 하였다. 또한 비상발전용 전원으로 사용하기 위한 태양광 시스템의 특성을 모델링하고 설계 해석하여 실제 사용하는데 효과적인 장치를 만들수 있음을 확인하였다.

전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구 (Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism)

  • 김일중;최연석
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

비상시 선로혼잡 해결을 위한 직접부하제어 (Direct Load Control Scheme for Congestion Problems in Power System Emergency)

  • 신호성;김병수;송경빈;김재철;이학주;권성철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2005
  • Most of the electric power in the power system of South Korea is flowing from the south area to the north area, Seoul, in the capital of South Korea. Almost of the needs of the electric power in the capital area are about 43% of the total loads and generation plants are mainly located in the south area of South Korea. As mentioned the earlier characteristic, transmission congestion is one of the important research issues. Because of the limits of the power flows from the south to the north which are anticipated to be increased more and more in the future, these congestion situations may cause a serious voltage stability problem in emergency of the power system. Accordingly, we are interested in an interruptible load control program so as to solve this problem in emergency. This problem can be solved by an interruptible load management in emergency, however, the systematic and effective mechanism has not been presented yet. In this paper, the algorithm of interruptible load management plan using the line sensitivity to the loads for the transmission congestion management in emergency is presented. The proposed method is applied to 6-Bus sample system and their results are presented.

  • PDF

태양광발전시스템을 이용한 유도등용 헝광램프의 점등에 관한 연구 (A Study on Lighting Emergency Lamp using Photovoltaic Generation System)

  • 이상집;성낙규;이승환;오봉환;백동현;이훈구;한경희
    • 한국화재소방학회논문지
    • /
    • 제14권1호
    • /
    • pp.22-26
    • /
    • 2000
  • 비상시 또는 화재발생시에 인명의 원활한 대피를 위한 피난유도설비는 매우 중요하다. 이중 유도등은 상시점등되어 있어야할 뿐만 아니라 비상전원이 필요하므로 경제적 손실이 커지게 된다. 본 연구에서는 태양전지, 쵸퍼, 인버터로 태양광발전시스템을 구성하여 태양광으로부터 발생되는 에너지를 축전지에 저장시킨 후, half-bridge 인버터를 이용하여 상용전원없이 유도등이 점등되도록 제어하였다. 그 결과 상용전원으로 유도등 점등시와 제안한 시스템에 의한 유도등 점등결과가 동일함을 입증하고 그 유용성을 확인하였다.

  • PDF