• Title/Summary/Keyword: Emergency Conditions

Search Result 567, Processing Time 0.031 seconds

Optimal Inspection Periods of Safety System of Wolsung Nuclear Power Plant Unit 1 with Human Error Consideration (인간실수를 고려한 월성 원자력발전소 안전계통의 최적점검주기에 관한 연구)

  • Mok, Jin-Il;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • The engineered safeguards of Wolsung nuclear power plant unit 1 contain redundant systems of 2-out-of-3 logic which are not operating under normal conditions but are called upon to act when emergency conditions develop. To ensure their operability, the systems are periodically tested. In this work, we develop the unavailability formulae for 2-out-of-3 logic configurations which take into account the failure probability of the channels tested due to human error in the simultaneous testing scheme. We also develop the model for the probability that the reactor is tripped during the surveillance test due to either system failure or human error. We determined the optimal inspection periods of safety systems, taking into account both the unavailability of the safety system and the probability that the reactor is tripped during the surveillance test. We compared the results with the inspection periods currently used at Wolsung NPP Unit 1. As a result, the inspection periods obtained using a minimum human error (8.24 $\times$ 1$^{-6}$ ) are shorter than those currently used in Wolsung NPP unit 1 whereas the inspection periods obtained using a maximum human error are (4.44 $\times$ 10$^{-4}$ ) longer than those used in Wolsung NPP unit 1.

  • PDF

Detailed Design for 25bar-class Biogas Compression Supplying System (25BAR급 바이오가스 고압 압축공급시스템 상세설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.173.1-173.1
    • /
    • 2011
  • The high fuel flexibility of gas turbine power system has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and sewage waste water as a fuel for gas turbines has increased. We investigated the performance of high pressure biogas compression system and operating conditions for supplying biogas. The total flow per minute of biogas from food waste water digestion tank is $54Nm^3$. The main type of biogas compression system is the reciprocating system and screw type system. The target of biogas mechanical data is the as belows; inlet pressure 0.045bar, supplying biogas temperature is $30{\sim}60^{\circ}C$, and final pressure is above the 25 bar. Also, inlet conditions of biogas consist of CH4 48.5%~83%, $H_2S$ Max. 500ppm, $NH_3$ Max. 1,500ppm and Siloxane 2.7~4.6ppm. The boosting Blower system raises a pressure from 0.045bar to 1bar before main compressor. The main system lay out of reciprocating consisits of compressor driver, filter, cooling system, blowdown vessel, control system and ESD(Emergency Shut Down) system. And an enclosure package needs to be installed for reducing noise up to 75dB. The system driver is the electronic motor of explosion proof type. Forthe compressor system reliable operation, the cleaning system something like particulate filter needs to be set up in the inlet of compressor and Coalescing Filter in the outlet of compressor. Particulate Filter has to be removed above $10{\mu}m$ size of the particles in biogas. The coalescing filter(Micofine Borosilicate Glass Fibers Filter treated phenol acid) also removes moisture and oil of above $0.3{\mu}m$ to be involved in high pressure biogas up to 90%~98%.

  • PDF

An operational analysis and dynamic behavior for a landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 작동 동적거동 해석)

  • Choi, Sup;Kwon, Hyuk-Beom;Chung, Sang-Joon;Jung, Chang-Rae;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.110-117
    • /
    • 2003
  • The operational characteristics of the landing gear retraction/extension depend on the complexity of design variables operational/environmental conditions. In order to meet the requirements of minimum stow area and performance, the integration of the landing gear system requires operational kinematic and dynamic analysis considering an effect of its related system. This study investigates operational dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of dynamic behavior on the landing gear operational characteristics is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of temperature, aerodynamic and maneuver load on normal/emergency operation of the landing gears and doors. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Outcomes of Home Monitoring after Palliative Cardiac Surgery in Infants with Congenital Heart Disease (선천성 심질환으로 고식적 수술을 시행 받은 영아의 홈모니터링의 성과)

  • Kim, Sang Wha;Uhm, Ju-Yeon;Im, Yu Mi;Yun, Tae-Jin;Park, Jeong-Jun;Park, Chun Soo
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.2
    • /
    • pp.228-236
    • /
    • 2014
  • Purpose: Common conditions, such as dehydration or respiratory infection can aggravate hypoxia and are associated with interstage mortality in infants who have undergone palliative surgery for congenital heart diseases. This study was done to evaluate the efficacy of a home monitoring program (HMP) in decreasing infant mortality. Methods: Since its inception in May 2010, all infants who have undergone palliative surgery have been enrolled in HMP. This study was a prospective observational study and infant outcomes during HMP were compared with those of previous comparison groups. Parents were trained to measure oxygen saturation, body weight and feeding volume and to contact the hospital through the hotline for emergency situations. Telephone counseling was conducted by clinical nurse specialists every week post discharge. Results: Forty-one infants were enrolled in HMP. Nine hundred telephone counseling sessions were conducted. Seventy-three infants required telephone triage with the most common conditions being gastrointestinal (50.7%) and respiratory symptoms (32.9%). With HMP intervention, interstage mortality decreased from 18.6% (8/43) to 9.8% (4/41) (${\chi}^2$=1.15, p=.283). Conclusion: Results indicate that active measures and treatments using the HMP decrease mortality rates, however further investigation is required to identify various factors that contribute to hemodynamic complications during the interstage period.

Symptom Pattern Classification using Neural Networks in the Ubiquitous Healthcare Environment with Missing Values (손실 값을 갖는 유비쿼터스 헬스케어 환경에서 신경망을 이용한 에이전트 기반 증상 패턴 분류)

  • Salvo, Michael Angelo G.;Lee, Jae-Wan;Lee, Mal-Rey
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.129-142
    • /
    • 2010
  • The ubiquitous healthcare environment is one of the systems that benefit from wireless sensor network. But one of the challenges with wireless sensor network is its high loss rates when transmitting data. Data from the biosensors may not reach the base stations which can result in missing values. This paper proposes the Health Monitor Agent (HMA) to gather data from the base stations, predict missing values, classify symptom patterns into medical conditions, and take appropriate action in case of emergency. This agent is applied in the Ubiquitous Healthcare Environment and uses data from the biosensors and from the patient’s medical history as symptom patterns to recognize medical conditions. In the event of missing data, the HMA uses a predictive algorithm to fill missing values in the symptom patterns before classification. Simulation results show that the predictive algorithm using the HMA makes classification of the symptom patterns more accurate than other methods.

Integrity Evaluation of Control Rod Assembly for Sodium-Cooled Fast Reactor due to Drop Impact (낙하충격에 의한 소듐냉각고속로 제어봉집합체의 건전성 평가)

  • Lee, Hyun Seung;Yoon, Kyung Ho;Kim, Hyung Kyu;Cheon, Jin Sik;Lee, Chan Bock
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • The CA (Control Assembly) of an SFR has a CRA(Control Rod Assembly) with an inner duct and control rod. During an emergency situation, the CRA falls into the duct of the CA for a rapid shut-down. The drop time and impact velocity of the CRA are important parameters with respect to the reactivity insertion time and the structural integrity of the CRA. The objective of this study was to investigate the dynamic behavior and integrity of the CRA owing to a drop impact. The impact analysis of the CRA under normal/abnormal drop conditions was carried out using the commercial FEM code LS-DYNA. Results of the drop impact analysis demonstrated that the CRA maintained structural integrity, and could be safely inserted into the flow hole of the damper under abnormal conditions.

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.

A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1 (국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

Characterization of ERp29 and ADP-Ribosylation Factor 5 Interaction (ERp29와 ADP-ribosylation factor 5의 결합특성)

  • Kwon, Ki-Sang;Seog, Dae-Hyun;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.613-615
    • /
    • 2011
  • ERp29 is a endoplasmic reticulum (ER) lumenal resident protein that shows sequence similarity to the protein disulfide isomerase family. Its biological function is thought to play a role in the processing of secretory proteins within the ER, possibly by participating in the folding of proteins in the ER. Although some data on ERp29 have been reported, its normal functions are still unclear. To gain insights into the function of ERp29, we identified ARF5 protein as a protein that interacts with ERp29 using yeast two-hybrid screening and GST pull-down assay. Interaction between ERp29 and ARF5 was detected under normal cell conditions but not under ER stress conditions. This result may provide a clue for understanding ERp29 biological functions.

A computational study on the removal of the non-isothermal concentrated fume from the semi-enclosed space

  • Chang, Hyuksang;Seo, Moonhyeok;Lee, Chanhyun
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.216-223
    • /
    • 2017
  • For the prediction of the ventilation rate for removing the non-isothermal concentrated fume from the semi-enclosed space, the computational fluid dynamics (CFD) analysis was done. Securing the proper ventilation conditions in emergency state such as in fire is crucial factor for the protection of the resident in the space. In the analysis for the determining the proper ventilation rate, the experimental study had the limitation for simulating the versatile conditions of fume development. The theoretical and computational method had been chosen as the alternate tool for the experimental analysis. In this study, the CFD analysis was done on the defined model which already had been done the experimental analysis by the previous workers. By comparing the prediction on the plume heights and the ventilation rates by the CFD analysis at, and in the parametric model of $1m^3$ with those of the previous experimental works, the feasibility of the computational analysis was evaluated. For the required ventilation rate analyzed by the CFD analysis was over predicted in 7.1% difference with that of the experimental results depending on the different plume height. With the comparison with the analytical Zukoski model at, the CFD analysis on the ventilation was under predicted in 8.3%. By the verification of the feasibility of the CFD analysis, the extended analysis was done for getting the extra information such as the water vapor distribution and $CO^2$ distribution in the semi-enclosed spaces.