Symptom Pattern Classification using Neural Networks in the Ubiquitous Healthcare Environment with Missing Values

손실 값을 갖는 유비쿼터스 헬스케어 환경에서 신경망을 이용한 에이전트 기반 증상 패턴 분류

  • Received : 2009.06.22
  • Accepted : 2009.12.02
  • Published : 2010.04.30

Abstract

The ubiquitous healthcare environment is one of the systems that benefit from wireless sensor network. But one of the challenges with wireless sensor network is its high loss rates when transmitting data. Data from the biosensors may not reach the base stations which can result in missing values. This paper proposes the Health Monitor Agent (HMA) to gather data from the base stations, predict missing values, classify symptom patterns into medical conditions, and take appropriate action in case of emergency. This agent is applied in the Ubiquitous Healthcare Environment and uses data from the biosensors and from the patient’s medical history as symptom patterns to recognize medical conditions. In the event of missing data, the HMA uses a predictive algorithm to fill missing values in the symptom patterns before classification. Simulation results show that the predictive algorithm using the HMA makes classification of the symptom patterns more accurate than other methods.

무선선서네트워크의 주요 응용분야 중 하나가 유비쿼터스 헬스케어 시스템이다. 하지만 무선센서네트워크가 가지고 있는 과제중의 하나는 데이터 중에 나타나는 높은 손실 율이다. 바이오 센서로부터 들어오는 데이터는 기지국에 도착되지 않을 수 있으며, 이 값은 손실 값(missing value)이 된다. 본 논문은 기지국에서 데이터를 수집하고, 손실 값을 처리한 후, 증상 패턴에 따라 건강상태를 분류하여, 비상시에 적절한 행동을 취할 수 있도록 하는 헬스케어 모니터 에이전트(HMA)를 제안한다. 이 에이전트는 유비쿼터스 헬스케어 환경에 적용되며, 건강상태를 인지하기 위한 증상패턴으로 바이오 센서 및 환자의 가족력으로 부터 생성된 데이터를 사용한다. 손실 값이 나타나면 HMA는 분류하기 전에 증상패턴의 손실 값을 채우기 위한 예측 알고리즘을 수행한다. 시뮬레이션 결과 HMA를 사용한 예측알고리즘이 다른 방법들에 비해 더 정확하게 증상패턴을 분류함을 보여주었다.

Keywords

References

  1. Jang, S., Lee, J., Lee, J., Park, S., Hwang, S., Yoon, H., Yoon, Y.: Ubiquitous Home Healthcare Management System with Early Warning Reporting. Proceedings of the International Conference on Convergence Information Technology (2007) 2394- 2401
  2. Braecklein, M., Tchoudovski, I., Moor, C., Egorouchkina, K., Pang, L., Bloz, A.: Wireless Telecardiological Monitoring for the Homecare Area. Proceedings of the 2005 IEEE, Engineering and Biology 27th Annual Conference (2005) 3793-3795
  3. Rodríguez, M., Favela, J.: Autonomous Agents to Support Interoperability and Physical Integration in Pervasive Environments. Proceedings of AWIC (2003) 307-317
  4. Bellavista, P., Corradi, A., Stefanelli, C.: Mobile Agent Middleware for Mobile Computing. Computer, Vol. 34, No. 3, (2001) 73-81 https://doi.org/10.1109/2.910896
  5. Han, S., Yoon, Y., Youn, H., Cho, W.: A New Middleware Architecture for Ubiquitous Computing Environment. Proceedings of STFEUS (2004) 117-121
  6. Brause, R.: Medical Analysis and Diagnosis by Neural Networks. Medical Data Analysis. Springer Verlag, Berlin Heidelberg (2001) 1-13
  7. Joo, S., Moon, W., Kim, H.: Computer-aided Diagnosis of Solid Breast Nodules on Ultrasound with Digital Image Processing and Artificial Neural Networks. Engineering in Medicine and Biology Society, Vol. 1, (2004) 1397-1400
  8. Giger, M.: Computer-aided Diagnosis of Breast Lesions in Medical Images. IEEE Computational Science and Engineering, Vol. 5, Issue 5 (2000) 39-45
  9. Verma, B., Zakos, J.: A Computer-aided Diagnosis System for Digital Mammograms based on Fuzzy-neural and Feature Extraction Techniques. IEEE Transactions on Information Technology in Biomedicine, Vol. 5, Issue 1 (2001) 46-54 https://doi.org/10.1109/4233.908389
  10. Mateo, R., Salvo, M., Lee, J.: Balanced Clustering using Mobile Agents for the Ubiquitous Healthcare Systems. Proceedings of the International Conference on Convergence and Hybrid Information Technology (2008) 686-691
  11. Thapa. D., Jung, I., Wang, G.: Agent Based Decision Support System Using Reinforced Learning Under Emergency Circumstances. Advances in Natural Computation, Vol. 3 (2005) 888-892
  12. Della Mea, V.: Agents Acting and Moving in Healthcare Scenario: A Paradigm of Telemedical Collaboration. IEEE Transaction on Information technology in Biomedicine, Vol. 5, Issue 1 (2001) 10-15 https://doi.org/10.1109/4233.908354
  13. Mateo, R.M., Cervantes, L., Yang, H., Lee, J.: Mobile Agents Using Data Mining for Diagnosis Support in Ubiquitous Healthcare. Proceedings of the Agent and Multi-Agent Systems: Technologies and Applications (2007) 795-804
  14. Antkowiak, M.: Artificial Neural Networks vs. Support Vector Machines for Skin Disease Recognition. Master's Thesis, Department of Computing Science, Umea University, Sweden (2006)
  15. Weinstein, J., Kohn, K., Grever, M.: Neural Computing in Cancer Drug Development. Predicting Mechanism of Action, Science (1992) 447-451
  16. Dickson, S.: Investigation of the use of Neural Networks for Computerized Medical Image Analysis. PhD Thesis, Department of Computer Science, University of Bristol (1998)
  17. Cheng, H.D., Chen, C.H., Freimanis, R.I.: A Neural Network for Breast Cancer Detection Using Fuzzy Entropy Approach. 1995 International Conference on Image Processing, Vol. 3 (1995) 3141-3147
  18. Sordo, M.: Introduction to Neural Networks in Healthcare. OpenClinical, available at http://www.openclinical.org/docs/int/neuralnetworks011.pdf (2002)
  19. Bashir S., Razzaq, S., Maqbool, U., Tahir, S.: Using Association Rules for Better Treatment of Missing Values. Available at http://arxiv.org/abs/0904.3320v1 (2009)
  20. Wu, C.H., Wun, C.H., Chou, H.J.: Using Association Rules for Completing Missing Data. Fourth International Conference on Hybrid Intelligent Systems (2004) 236-241
  21. Gerardo, B., Lee, J.W., Lee, J.S., Park, M., Lee, M.: The Association Rule Algorithm with Missing Data in Data Mining. Computational Science and Its Applications - ICCSA (2004) 97-105
  22. Sleit, A., Al-Akhras, M., Juma, I., Alian, M.: Applying Ordinal Association Rules for Cleansing Data With Missing Values. Journal of American Science (2009) 52-62
  23. Karthik, R.: ECG Simulation using MATLAB. Available at http://www.mathworks.com/matlabcentral/fileexchange/10858 (2006)