• Title/Summary/Keyword: Embryonic tissues

Search Result 125, Processing Time 0.032 seconds

Altering of Collagens in Early Pregnant Mouse Uterus (착상전 생쥐 자궁에서 콜라겐의 변화)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Specific endometrial preparation should occur during periimplantation period. That is a progress of serial differentiation and is absolute in implantation of embryo and successful pregnancy. Remodeling of tissues shown during embryogenesis is regulated by various factors including extracellular matrix (ECM). Marked changes during pregnancy are including embryo migration, decidual response, and differentiation of placenta in placental animals including human. These changes to successful implantation in embryo and uterus have to prepare the competence for attachment of embryo and uterus, and invasion defense of uterus. During these changes, ECM dramatically changes for maintaining the uterine and embryonic functions. The major component of most connective tissue is collagens. It is very complex and hard to explore the mechanisms for ECM modulation. Recently using high throughput methodology, PCR-select cDNA subtraction method, microarray, many candidate genes have been identified. Steroid hormones have fundamental role in implantation and maintenance of pregnancy. Dermatopontin, a regulator of collagen accumulation, is regulated spatio-temporally in the uterus by primarily progesterone through progesterone receptors at the time of implantation. Modulation of extracellular matrix is critically regulated by cascade of gene net-works which are regulated by cascade of sex steroid hormones. Pathological regulation of uterine extracellular matrix reported in diabetic patients. To know the extracellular modulation is essential to understanding implantation, feto-placental development and overcome the paths involved in female reproduction. Though ECM composed with very various components and it is complex, the present review focused on the fate of collagens during periimplantation period.

  • PDF

Tumorigenicity of benzo(a)pyrene and benzo(a)pyrene diol epoxides in v-Ha-ras transgenic TG-AC mice

  • Lee Byung Mu;Germolec Dori;Jeohn Kwang-Ho;Tennant Raymond W,
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 1998.10a
    • /
    • pp.36-36
    • /
    • 1998
  • Tumorigenicity of benzo(a)pyrene (BP) and benzo(a)pyrene diol epoxides ((+)BPDE-1, (-)BPDE-1) was investigated in transgenic TG-AC mice carrying v-Ha-ras oncogene fused to the promoter of the mouse embryonic a-like, z-globin gene. Animals were topically treated twice per week for 25weeks with BPDE (10$\mu$g/mouse) and BP (10, 20, 40$\mu$g/mouse). In addition, animals were treated with BPDE or BP (initiated) followed by TPA (2$\times$2.5$\mu$g/week, for 4 weeks) for promotion study. In the continuous treatment of BPDE or BP, animals treated with 40$\mu$g BP showed $100\%$ tumor response after 20 weeks, $40\%$ of mice for 20$\mu$g BP, and $20\%$ for (+)BPDE-1, but (-)BPDE-1 and 10$\mu$g BP did not show any tumor response. After 25 weeks, most tumors turned out to be carcinomas in animals treated with 40$\mu$g BP. In BPDE or BP/TPA Initiation-promotion study, papilloma response occurred earlier (6 weeks after TPA treatment) than in continuously treated animals with BPDE or BP. RT-PCR assay for transgene expression showed that BP or BPOE was not transgene dependent in its tumorigenicity, but TPA was. Several Cytokine genes(TGF-a, TNF-a) and c-myc gene expressions were monitored in skin tissues during BP carcinogenesis. In early stage of BP treatment, the gene expressions were elevated(c-myc,TGF-a) or unchanged(TNF-a) compared to control, but the levels were gradually decreased during both middle and late stages of cacinogenesis, Gene expression levels of skin papillomas in acetone initiated-TPA promoted animals were close to those of middle stage or between middle and late stages. i-NOS was also highly expressed in carcinoma and papilloma, These data suggest that transgene expressions of TG-AC mice were not dependent on BP carcinogenesis and that TG-AC mice were more sensitive to TPA regardless of types of initiators. In addition, genes(TGF-a, c-myc, TNF-a, i-NOS) were modulated in the skin during BP cacinogenesis or TPA promotion.

  • PDF

Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2 (혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Nitric oxide (NO) plays an important role in immunologic defense, and influences upon the functioning of secretory tissues and cells. It also exhibits cytotoxic/cytostatic activity as one of major operating effectors of the cellular immunity system. We investigated the effects of serum on the cell damages and NO production in the mouse liver cell line BNL CL.2 to establish the role of NO. We observed that, when BNL CL.2 cells were cultured in serum-free medium, they were induced to cell damage by the stimulation of IFN-$\gamma$ alone or IFN-$\gamma$ plus LPS. Serum-starved cells showed large amount of nitrite accumulation and NO synthase (NOS) expression in response to IFN-$\gamma$ alone in dose- and time- dependent manners, but serum-supplied cells did not The production of NO was blocked by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin. These results suggest that the deprivation of serum in the BNL CL.2 cell culture medium might primed with the cells to produce NO when the cells are triggered by IFN-$\gamma$ and the involvement of PTK signal transduction pathway in the expression of NOS gene in murine hepatocytes.

  • PDF

Immunohistochemical Expressions of Sodium/Iodide Symporter (NIS) and Thyroid Transcription Factor-l (TTF-1) and Their Relationship in Primary Pulmonary Adenocarcinoma

  • Lee Kyung-Eun;Kang Do-Young;Choi Phil-Jo;Hong Young-Seoub;Roh Mee-Sook;Shon Jae-Jeong;Lee Jung-Min;Hwang Soo-Myoung
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2006
  • Sodium iodide symporter (NIS) plays a key role in thyroid hormone production by efficiently accumulating iodide from the circulating blood into the thyocytes, and this is done against an electrochemical gradient. Thyroid transcription factor-l (TTF-l) is a homeodomain-containing protein expressed in embryonic diencephalons, thyroid, and lung and has been found to bind to thyroid specific promoters and to activate their transcriptional activity. TTF-l may be one of the factors capable of activating NIS gene expression in the thyroid gland, thus it accounts for the lower levels of NIS gene expression that are seen in the extrathyroidal tissues. However, a high frequency of TTF-l expression has been observed, especially in primary lung adenocarcinoma. The present study was undertaken in order to elucidate the relationship between the expression of NIS and TTF-l in primary lung adenocarcinoma. Immunohistochemical studies for NIS and TTF-l were performed in 64 primary lung adenocarcinomas. Immunoreactivities for NIS and TTF-l were found in 49 (76.6%) and 45 (70.3%) out of 64 cases, respectively. Forty-one (83.7%) of the 49 cases with positive NIS immunoreactivity showed positive TTF-l expression, whereas 11 (73.3%) of the 15 cases with negative NIS immunoreactivity showed negative TTF-l expression (P<0.05). So the NIS expression was significantly associated with the TTF-l expression. These findings suggest that TTF-l may be one of the factors capable of activating NIS gene expression in primary lung adenocarcinoma. Further studies are needed to define the relation between NIS and TTF-l for examining the mechanisms of tissue-specific NIS expression.

  • PDF

Identification and gene expression profiling of chicken Pumilio family, Pum1 and Pum2

  • Lee, Jee-Young;Kim, Duk-Kyung;Zheng, Ying-Hui;Kim, Sun-Young;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.64-65
    • /
    • 2005
  • Members of the Pumilio are the RNA binding proteins acting as translational repressors and required for germ cell development and asymmetric division. We identified chicken Pum1 and Pum2 that are similar to mouse and human in highly conserved C-terminal RNA-binding domain and eight tandem repeats. The comparative sequence analysis of Pum1 and Pum2 from fly, chicken, mouse and human shows high degree of evolutionary conservation in the homology of the peptide sequence and the structure of PUM-HD (Pumilio homology domain) with similar spacing between adjacent Pum repeats. Also, structures of chicken Pum1 and Pum2 genes are almost identical to those of mouse and human. We revealed that the expression levels of Pum1 and Pum2 were the highest in hatched female gonad among various embryonic tissues, and Pum2 expressed highly in 12-day and hatched gonad by real-time RT-PCR. These results suggest that Pum1 and Pum2 might have an effect on the development of chicken gonad.

  • PDF

Mapping, Tissue Distribution and Polymorphism of Porcine Retinol Binding Protein Genes (RBP5 and RBP7)

  • Gong, W.H.;Tang, Z.L.;Han, J.L.;Yang, S.L.;Wang, H.;Li, Y.;Li, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1544-1550
    • /
    • 2008
  • The retinoids (vitamin A and its derivatives) play a critical role in vision, growth, reproduction, cell differentiation and embryonic development. Using the IMpRH panel, porcine cellular retinol binding protein genes 5 and 7 (RBP5 and RBP7) were assigned to porcine chromosomes 5 and 6, respectively. The complete coding sequences (CDS) of the RBP5 and RBP7 genes were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) method, and the deduced amino acid sequences of both genes were compared to human corresponding proteins. The mRNA distributions of the two genes in adult Wuzhishan pig tissues (lung, skeletal muscle, spleen, heart, stomach, large intestine, lymph node, small intestine, liver, brain, kidney and fat) were examined. A total of nine single nucleotide polymorphisms (SNPs) were identified in two genes. Three of these SNPs were analyzed using the polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) method in Laiwu, Wuzhishan, Guizhou, Bama, Tongcheng, Yorkshire and Landrace pig breeds. Association analysis of genotypes of these SNP loci with economic traits was done in our experimental populations. Significant associations of different genotypes of $RBP5-A/G^{63}$, $RBP5-A/G^{517}$ and $RPB5-T/C^{intron1-90}$ loci with traits including maximum carcass length (LM), minimum carcass length (LN), marbling score (MS), back fat thickness at shoulder (SBF), meat color score (MCS) and hematocrit (HCT) were detected. These SNPs may be useful as genetic markers in genetic improvement for porcine production.

ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1- and SRE-mediated transcriptional activity

  • Deng, Yun;Liu, Bisheng;Fan, Xiongwei;Wang, Yuequn;Tang, Ming;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Luo, Na;Zhou, Junmei;Wu, Xiushan;Yuan, Wuzhou
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.193-198
    • /
    • 2010
  • In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The cDNA of ZNF552 is 2.3 kb, encoding 407 amino acids with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs in the nucleus and cytoplasm. Northern blotting analysis indicated that a 2.3 kb transcript specific for ZNF552 was expressed in liver, lung, spleen, testis and kidney, especially with a higher level in the lung and testis in human adult tissues. Reporter gene assays showed that ZNF552 was a transcriptional repressor, and overexpression of ZNF552 in the COS-7 cells inhibited the transcriptional activities of AP-1 and SRE, which could be relieved through RNAi analysis. Deletion studies showed that the KRAB domain of ZNF552 may be involved in this inhibition.

DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos (소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Kim, Dong-Hoon;Cha, Byung-Hyun;Kim, Seong-Soo;Yang, Byoung-Chul;Im, Gi-Sun;Kim, Myong-Jik;Min, Kwan-Sik;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • DNA methylation is involved in tissue-specific gene control and essential for normal embryo development Octamer-binding transcription factor 4 (Oct-4) is one of the most important transcription factors for early differentiation. This study was performed whether the bovine Oct-4 is tissue specific or developmental dependent epigenetic mark, we investigated transcripts and the methylation status of CpGs of 5'-promoter region of Oct-4 in bovine preimplantation embryos. Oct-4 transcripts were highly detected in morula and blastocyst, while they were present low levels in sperm and 2- to 8-cell stage embryos. These results suggest that de novo expression of Oct-4 initiates at morula stage of embryogenesis. Here we determined that there is a tissue-dependent differentially methylated region (T-DMR) in the 5'-promoter region of Oct-4. The methylation status of the Oct-4 T-DMR was distinctively different in the oocyte from that in the sperm and adult somatic tissues and changed from zygote to blastocyst stage, suggesting that active methylation and demethylation occur during preimplantation development. Based on these results, the 5'-promoter region of Oct-4 gene is target for DNA methylation and the methylation status changes variously during embryonic development in bovine.

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.