• 제목/요약/키워드: Embryo Antioxidant

검색결과 94건 처리시간 0.024초

쌀 배아와 흑미 미강 색소 첨가 배아젤리가 고콜레스테를 식이 흰쥐의 지질대사와 항산화효소 활성에 미치는 영향 (Effects of Rice Embryo and Embryo Jelly with Black Rice Bran Pigment on Lipid Metabolism and Antioxidant Enzyme Activity in High Cholesterol-Fed Rats)

  • 조민경;김미현;강미영
    • Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.200-206
    • /
    • 2008
  • 본 연구는 쌀 배아를 활용한 만성 대사성질환 예방용 제품 및 건강기능성 식품 개발의 일환으로써 고콜레스테롤 식이를 급여하여 고지혈증을 유발시킨 흰쥐에서 15%의 배아와 25%의 흑미 미강색소 배아젤리의 첨가가 혈장과 간 조직의 지질 대사와 항산화효소의 환성에 미치는 영향을 살펴보았다. 실험 식이를 6주 간 급여한 결과, 배아와 흑미 미강색소 배아젤리 첨가는 실험동물의 식이섭취에 영향을 미치지 않았다. 배아군과 흑미 미강색소 배아젤리군은 고콜레스테롤 급여 대조군에 비해 혈장의 총 콜레스테롤과 LDL-콜레스테롤 및 간의 중성지방과 총 콜레스테롤 농도를 감소시키고, HDL-콜레스테롤 농도와 HDL-C/TC 비는 증가시켰으며, 동맥경화지수는 감소시켜 체내 지질대사의 개선 효과가 있었다. 혈장 GOT와 GPT 수치는 배아와 흑미 미강색소 배아젤리를 첨가하였을 때 감소하여 고콜레스테롤혈증 상태에서 간 기능 보호에 긍정적인 효과가 있었다. 또한 배아와 흑미 미강색소 배아젤리는 고콜레스테롤 급여로 인해 증가된 혈장과 간 내의 지질과산화를 억제시키는 효과가 있었다. 반면, 항산화 효소인 간 조직의 SOD와 CAT활성은 배아와 배아젤리 첨가에 따라 증가하였다. 이상의 결과로 볼 때 배아와 흑미 미강색소 배아젤리는 고콜레스테롤 식이 흰쥐의 간 조직에서의 항산화 활성을 강화시키고 산화적 손상을 억제시키는 자용이 있으며 현장과 간조직의 지질대사를 개선하여 심혈관계 질환을 예방 및 감소시킬 수 있을 것으로 사료된다.

The Effects of Resveratrol on Oocyte Maturation and Preimplantation Embryo Development

  • Kwak, Seong-Sung;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제27권2호
    • /
    • pp.71-80
    • /
    • 2012
  • Biotechnologies for cloning animals and in vitro embryo production have the potential to produce biomedical models for various researches. Especially, pigs are a suitable model for xenotransplantation, transgenic production and various areas of reproductive research due to its physiological similarities to human. However, utilization of in vitro-produced embryos for transfer remains limited. Despite improvement over past few decades, obstacles associated with the production of good quality embryos in vitro still exist which limit the efficiency of cloning. One of major problems includes improper in vitro maturation (IVM) and culture (IVC). Oxidative stress caused from in vitro culture conditions contributes to inadequate IVM and IVC which leads to poor developmental competence of oocytes, failure of fertilization and embryo development. To reduce the oxidative stress, various antioxidants have been used to IVM and IVC system. However, limited information is available on the effects of resveratrol on livestock reproductions. Resveratrol is a polyphenolic natural product and well known as an antioxidant in foods and beverages (e.g. in grapes and red wine). Resveratrol is known to be cardioprotective, anticarcinogenic, anti-inflammatory, antioxidant and antiapoptotic. This paper will review the effects of resveratrol on in vitro maturation of oocytes and embryo development.

Effect of glutathione on tetraploid embryo development in the pigs

  • Kim, Hwa-Young;Lee, Sang-Hee;Hwangbo, Yong;Lee, Seung Tae;Lee, Eunsong;Park, Choon-Keun
    • 한국수정란이식학회지
    • /
    • 제31권3호
    • /
    • pp.207-213
    • /
    • 2016
  • The objective of this study was to investigate to influence of glutathione (GSH) on development and antioxidant enzyme activity in tetraploid porcine embryos. Tetraploid embryos were produced using parthenogenetic 2-cell embryo by electrofusion method. Tetraploid embryo development was observed every 24 hours and intracellular antioxidant enzyme activity was measured at 120 hours after electrofusion. The 4-cell to 16-cell stage tetraploid embryos was increased in 100 and $500{\mu}M$ GSH-treated groups compared control group at 48 hours (P < 0.05) but cleavage rates were not significantly different among the GSH treatment groups at 48, 72, 96, and 120 hours. Blastocyst formation was significantly increased by 300 and $500{\mu}M$ GSH at 120 hours in tetraploid embryos (P < 0.05). But blastocyst cell number were not significantly different among the GSH treatment groups ($16.4{\pm}0.8$, $16.8{\pm}2.6$, $18.5{\pm}2.8$ and $17.5{\pm}1.8$). The intracellular antioxidant enzyme level was increased in $500{\mu}M$ GSH compared to 0 and $100{\mu}M$ GSH (P < 0.05). We suggest that GSH may be improve development of tetraploid embryo in pigs.

Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro

  • Huang, Ziqiang;Pang, Yunwei;Hao, Haisheng;Du, Weihua;Zhao, Xueming;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1420-1430
    • /
    • 2018
  • Objective: Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and is considered one of the most promising bioactive compounds in green tea because of its strong antioxidant properties. However, the protective role of EGCG in bovine oocyte in vitro maturation (IVM) has not been investigated. Therefore, we aimed to study the effects of EGCG on IVM of bovine oocytes. Methods: Bovine oocytes were treated with different concentrations of EGCG (0, 25, 50, 100, and $200{\mu}M$), and the nuclear and cytoplasmic maturation, cumulus cell expansion, intracellular reactive oxygen species (ROS) levels, total antioxidant capacity, the early apoptosis and the developmental competence of in vitro fertilized embryos were measured. The mRNA abundances of antioxidant genes (nuclear factor erythriod-2 related factor 2 [NRF2], superoxide dismutase 1 [SOD1], catalase [CAT], and glutathione peroxidase 4 [GPX4]) in matured bovine oocytes were also quantified. Results: Nuclear maturation which is characterized by first polar body extrusion, and cytoplasmic maturation characterized by peripheral and cortical distribution of cortical granules and homogeneous mitochondrial distribution were significantly improved in the $50{\mu}M$ EGCG-treated group compared with the control group. Adding $50{\mu}M$ EGCG to the maturation medium significantly increased the cumulus cell expansion index and upregulated the mRNA levels of cumulus cell expansion-related genes (hyaluronan synthase 2, tumor necrosis factor alpha induced protein 6, pentraxin 3, and prostaglandin 2). Both the intracellular ROS level and the early apoptotic rate of matured oocytes were significantly decreased in the $50{\mu}M$ EGCG group, and the total antioxidant ability was markedly enhanced. Additionally, both the cleavage and blastocyst rates were significantly higher in the $50{\mu}M$ EGCG-treated oocytes after in vitro fertilization than in the control oocytes. The mRNA abundance of NRF2, SOD1, CAT, and GPX4 were significantly increased in the $50{\mu}M$ EGCG-treated oocytes. Conclusion: In conclusion, $50{\mu}M$ EGCG can improve the bovine oocyte maturation, and the protective role of EGCG may be correlated with its antioxidative property.

Effect of Antioxidant Treatment during Parthenogenetic Activation Procedure on the Reactive Oxygen Species Levels and Development of the Porcine Parthenogenetic Embryos

  • Bae, Hyo-Kyung;Kim, Soo-Hyun;Lee, Sung-Young;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • 제37권1호
    • /
    • pp.51-55
    • /
    • 2013
  • The present study was conducted to examine the effect of antioxidant treatment during parthenogenetic activation procedure on the reactive oxygen species (ROS) levels and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by a combination of electric stimulus and 2 mM 6-dimethylaminopurine (6-DAMP) before in vitro culture. During the activation period, oocytes were treated with $50{\mu}M$ ${\beta}$-mercaptoethanol (${\beta}$-ME), $100{\mu}M$ L-ascorbic acid (Vit. C) or $100{\mu}M$ L-glutathione (GSH). To examine the ROS level, porcine parthenogenetic embryos were stained in $10{\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) dye 20 h after culture, examined under a fluorescence microscope, and the fluorescence intensity (pixels) were analyzed in each embryo. The parthenogenetic embryos were cultured for 6 days to evaluate the in vitro development. The apoptosis was measured by TUNEL assay. The $H_2O_2$ levels of parthenogenetic embryos were significantly lower in antioxidant treatment groups ($26.9{\pm}1.6{\sim}29.1{\pm}1.3$ pixels/embryo, p<0.05) compared to control ($33.2{\pm}1.7$ pixels/embryo). The development rate to the blastocyst stage was increased in antioxidant treatment groups (32.0~32.5%) compared to control (26.9%, p<0.05), although, there was no difference in apoptosis among groups. The result suggests that antioxidant treatment during parthenogenetic activation procedure can inhibit the ROS generation and enhance the in vitro development of porcine parthenogenetic embryos.

Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture

  • Jang, H.Y.;Jung, Y.S.;Cheong, H.T.;Kim, J.T.;Park, C.K.;Kong, H.S.;Lee, H.K.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권7호
    • /
    • pp.980-987
    • /
    • 2008
  • The objective of this study was to investigate the effects of cell status of BOEC on development of bovine IVM/IVF embryos and gene expression in BOEC before or after culturing of embryos. The developmental rates beyond morula stage in the BOEC co-culture group was significantly higher than in the control group (p<0.05). In particular, blastocyst production in the BOEC co-culture group (28.3%) was dramatically increased compared with the control group (7.2%). In the in vitro development of bovine IVM/IVF embryos according to cell status, the developmental rates beyond morula stage in the primary culture cell (PCC) co-culture group were the highest of all experimental groups. Expression of genes related to growth (TGF-${\beta}$ EGF and IGFBP), apoptosis (Bax, Caspase-3 and p53) and antioxidation (CuZnSOD, MnSOD, Catalase and GPx) in different status cells of BOEC for embryo culture was detected by RT-PCR. While EGF gene was detected in isolated fresh cells (IFC) and PCC, TGF-${\beta}$ and IGFBP were found in IFC or PCC after use in the embryo culture, respectively. Caspase-3 and Bax genes were detected in all experimental groups regardless of whether the BOEC was used or not used in the embryo culture. However, p53 gene was found in IFC of both conditions for embryo culture and in frozen/thawed culture cells (FPCC) after use in the embryo culture. Although antioxidant genes examined were detected in all experimental groups before using for the embryo culture, these genes were not detected after use. This study indicated that the BOEC co-culture system used for in vitro culture of bovine IVF embryos can increase the developmental rates, and cell generations and status of BOEC might affect the in vitro development of bovine embryos. The BOEC monolayer used in the embryo culture did not express the growth factors (TGF-${\beta}$ and EGF) and enzymatic antioxidant genes, thereby improving embryo development in vitro.

Expression of the Antioxidant Enzyme and Apoptosis Genes in in vitro Maturation lin vitro Fertilization of Porcine Embryos

  • H. Y. Jang;H. S. Kong;Park, K. D.;G. J. Jeon;Lee, H. K.;B. K. Yang
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.47-47
    • /
    • 2003
  • The present study was conducted to determine the expression of the antioxidant enzyme(CuZn-SOD, Mn-SOD and GPX and apoptosis gene(caspase-3) for in vitro culture in in vitro maturation and in vitro fertilization(IVM/IVF) embryos in porcine. Porcine embryos derived from IVM/IVF were cultured in NCSU23 medium under 5% $CO_2$ in air at 38.5$^{\circ}C$. The patterns of gene expression for several antioxidant enzyme and apoptosis genes during preimplantion porcine embryo development were examined by the modified semi-quantitative single cell reverse transcriptase- polymerase chain reaction (RT-PCR). Preimplantation porcine embryos produced by IVM/IVF have expressed mRNAs for CuZn-SOD and GPX, whereas transcripts for Mn-SOD have not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell, 16 cell and morula stages. The fas ligand transcripts were detected in porcine blastocyst. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in in vitro culture of porcine IVM/IVF embryos.

  • PDF

$\beta$-Mercaptoethanol 첨가에 의한 소 초기배의 체외발생 효과 (Effect of $\beta$-Mercaptoethand Addition on Early Bovine Embryo during In Vitro Development)

  • 이홍준;서승운;이광희;김기동;이상호;송해범
    • 한국가축번식학회지
    • /
    • 제21권4호
    • /
    • pp.389-396
    • /
    • 1997
  • Arrest in embryo development during in vitro culture has been reported in various mammals. Although some cause of the arrest have been suggested, little is known of the way that can overcome the arrest using in vitro culture system. The antioxidant, $\beta$-mercaptoethanol($\beta$-ME), has been shown to play an important role in embryo development. This study was designed to examine the effect of $\beta$-ME on the developing boving embryos produced in vitro by IVM and IVF. To select a, pp.opriate concentration of $\beta$-ME during whole culture period (7 days), various concentrations (10, 50 and 100$\mu$M) of $\beta$-ME were added to the CZB medium and their effects was significantly higher in 100$\mu$M of $\beta$-ME. The effects on development of embryos cultured with and without somatic cells to blastocyst stage were greater in FCS treatment (56.6 and 29.3%) than in BSA treatment(25.5 and 12.8%). We also evaluated the effects of $\beta$-ME addition on the blastocyst formation when embryos at different stages were exposed to 100$\mu$M $\beta$-ME. $\beta$-ME promoted increased development of embryo to blastocyst stage and the effect was greater in 6-cell to morula embryos than in embryos fewer than 4-cells at the initiation of treatment. The results suggested that $\beta$-ME can improve bovine embryo development by overcoming the arrest in early development.

  • PDF

Inhibition of Reactive Oxygen Species Generation by Antioxidant Treatments during Bovine Somatic Cell Nuclear Transfer

  • Bae, Hyo-Kyung;Kim, Ji-Ye;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • 제36권2호
    • /
    • pp.115-120
    • /
    • 2012
  • This study was conducted to examine the optimal concentration and treatment time of antioxidants for inhibition of the ROS generation in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine oocytes were activated parthenogenetically, during which oocytes were treated with various antioxidants to determine the optimal concentrations and kind of antioxidants. Determined antioxidants were applied to oocytes during in vitro maturation (IVM) and/or SCNT procedures. Finally, antioxidant-treated SCNT embryos were compared with in vitro fertilized (IVF) embryos. $H_2O_2$ levels were analyzed in embryos at 20 h of activation, fusion or insemination by staining of embryos in $10{\mu}M$ 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, followed by fluorescence microscopy. $H_2O_2$ levels of parthenogenetic embryos were significantly lower in $25{\mu}M$ ${\beta}$-mercaptoethanol (${\beta}$-ME), $50{\mu}M$ L-ascorbic acid (Vit. C), and $50{\mu}M$ L-glutathione (GSH) treatment groups than each control group ($24.0{\pm}1.5$ vs $39.0{\pm}1.1$, $29.7{\pm}1.0$ vs $37.0{\pm}1.2$, and $32.9{\pm}0.8$ vs $36.3{\pm}0.8$ pixels/embryo, p<0.05). There were no differences among above concentration of antioxidants in direct comparison ($33.6{\pm}0.9{\sim}35.2{\pm}1.1$ pixels/embryo). Thus, an antioxidant of $50{\mu}M$ Vit. C was selected for SCNT. $H_2O_2$ levels of bovine SCNT embryos were significantly lower in embryos treated with Vit. C during only SCNT procedure ($26.4{\pm}1.1$ pixels/embryo, p<0.05) than the treatment group during IVM ($29.9{\pm}1.1$ pixels/embryo) and non-treated control ($34.3{\pm}1.0$ pixels/embryo). Moreover, $H_2O_2$ level of SCNT embryos treated with Vit. C during SCNT procedure was similar to that of IVF embryos. These results suggest that the antioxidant treatment during SCNT procedures can reduce the ROS generation level of SCNT bovine embryos.

Antioxidative and antiproliferative activities of ethanol extracts from pigmented giant embryo rice (Oryza sativa L. cv. Keunnunjami) before and after germination

  • Chung, Soo Im;Lee, Sang Chul;Yi, Seong Joon;Kang, Mi Young
    • Nutrition Research and Practice
    • /
    • 제12권5호
    • /
    • pp.365-370
    • /
    • 2018
  • BACKGROUND/OBJECTIVES Oxidative stress is a major cause of cancer. This study investigated the effects of the ethanol extracts from germinated and non-germinated Keunnunjami rice, a blackish-purple pigmented cultivar with giant embryo, on selected human cancer cell lines and on the antioxidant defense system of mice fed with a high-fat diet. MATERIALS/METHODS: High fat-fed mice were orally administered with either distilled water (HF) or extracts (0.25%, w/w) from brown (B), germinated brown (GB), Keunnunjami (K), and germinated Keunnunjami (GK) rice. RESULTS: In comparison with the brown rice extract, Keunnunjami extract showed higher anticancer effect against cervical and gastric cell lines but lower anticancer activity on liver and colon cancer cells. Mice from the HF group showed significantly higher lipid peroxidation and lower antioxidant enzyme activities than the control group. However, the oxidative stress induced by high-fat diet markedly decreased in B, GB, K, and GK groups as compared with the HF group. CONCLUSIONS: Germination may be an effective method for improving the anticancer and antioxidative properties of Keunnunjami rice and extracts from germinated Keunnunjami rice may serve as a therapeutic agent against cervical and gastric cancers and oxidative damage.