• Title/Summary/Keyword: Embedded structure

Search Result 1,173, Processing Time 0.028 seconds

A Case Study of Supply Chain Management System of LG Siltron, Korea (실리콘 웨이퍼 공급사슬관리 시스템 구축에 관한 연구: (주) LG 실트론 사례를 중심으로)

  • Lee, Ho-Chang
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.234-246
    • /
    • 2005
  • A silicon wafer is a highly customized product made to the individual order varying its electrical and physical characteristics. Therefore, it has distinctive supply chain structure that is different from highly standardized commodity product. For high-volume/high-standardization product, it is general that a main stream of information flow initiated by the production planning of the manufacturers is usually directed to push both ways in a supply chain: upstream to the suppliers and downstream to the customers. Contrastingly, for low-volume/high-customization product, the information flow triggered by the fluctuating customer demand usually propagates upward to the suppliers through the manufacturers. Furthermore, for R &D based hi-technology product like silicon wafer, the interactive information feedback mechanism between manufacturer and customer, which is essential to the new product development process, is to be embedded in the supply chain. This article is a case study of supply chain management system of LG Siltron, a major Korean silicon wafer manufacturer. The SCM system entails special information structure fitting well typical high-variety/high-customization product, and also gives application possibilities to the R&D based high-technology product made to the individual customer order.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture

  • Sim, Young-Hoon;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1062-1067
    • /
    • 2015
  • Floating architecture is a type of building that is geographically located on a sea or a river. It floats under the influence of buoyancy, and does not have an engine for moving it. Korea is a peninsula surrounded by sea except on the north side, so floating architectures have been mainly focused on two points: solving the issue of small territory and providing various leisure & cultural spaces. Floating architectures are expected to save energy effectively, if they use sea water heat, which is known to be clean energy with infinite reserves. To use sea water heat as the heat source and/or heat sink, this study proposes a model in which a sea water heat exchanger is embedded in the concrete structure in the lower part of the floating architecture that is submerged under the sea. Based on the results of performance evaluations of the sea water heat exchanger using CFD (computational fluid dynamics) analysis and mock-up experiments under various conditions, it is found out that the temperature difference between the inlet and outlet of the heat exchanger is in the range of $3.06{\sim}9.57^{\circ}C$, and that the quantity of heat transfer measured is in the range of 3,812~7,180 W. The CFD evaluation results shows a difference of 5% with respect to the results of mock-up experiment.

Bio-inspired neuro-symbolic approach to diagnostics of structures

  • Shoureshi, Rahmat A.;Schantz, Tracy;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 2011
  • Recent developments in Smart Structures with very large scale embedded sensors and actuators have introduced new challenges in terms of data processing and sensor fusion. These smart structures are dynamically classified as a large-scale system with thousands of sensors and actuators that form the musculoskeletal of the structure, analogous to human body. In order to develop structural health monitoring and diagnostics with data provided by thousands of sensors, new sensor informatics has to be developed. The focus of our on-going research is to develop techniques and algorithms that would utilize this musculoskeletal system effectively; thus creating the intelligence for such a large-scale autonomous structure. To achieve this level of intelligence, three major research tasks are being conducted: development of a Bio-Inspired data analysis and information extraction from thousands of sensors; development of an analytical technique for Optimal Sensory System using Structural Observability; and creation of a bio-inspired decision-making and control system. This paper is focused on the results of our effort on the first task, namely development of a Neuro-Morphic Engineering approach, using a neuro-symbolic data manipulation, inspired by the understanding of human information processing architecture, for sensor fusion and structural diagnostics.

Design and Reliability Analysis of Frequency Locked Loop Circuit with Symmetric Structure (대칭적 구조를 가진 주파수 고정 루프 회로의 설계 및 신뢰성 분석)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2933-2938
    • /
    • 2014
  • In this paper, the FLL(Frequency Locked Loop) circuit using current conveyor circuit is designed by $0.35{\mu}m$ CMOS process. The FLL circuit is built in a frequency divider, a frequency-to-voltage converter, a voltage subtractor and a oscillator and the circuit blocks have a symmetric structure to improve a reliability characteristics with a process variation. From the simulation results, the variation rate of output frequency is about less than ${\pm}1%$ when the channel length, channel width, resistance and capacitance are varied ${\pm}5%$.

A Study on a Compact Coupler between an Optical Fiber and a Grating-assisted Graphene-embedded Silicon Waveguide for a Wavelength-selective Photodetector

  • Heo, Hyungjun;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.514-524
    • /
    • 2017
  • We proposed an integrated wavelength-selective photodetector based on a grating-assisted contradirectional coupler and a graphene absorption layer for a coarse wavelength division multiplexing (CWDM) communication system. The center wavelength of the absorption spectrum of the proposed device can be tuned simply by changing the period of the grating, and the proposed device structure is suitable to forming a cascaded structure. Therefore, an array of the proposed device of different grating periods can be used for simultaneous wavelength demultiplexing and signal detection in a CWDM communication system. Our theoretical study showed that the designed device with a grating length of $500{\mu}m$ could have an absorption of 95.1%, an insertion loss of 0.2 dB, and a 3 dB bandwidth of 7.5 nm, resulting in a -14 dB crosstalk to adjacent CWDM channels. We believe that the proposed device array can provide a compact and economic solution to receiver implementation in the CWDM system by combining functions of wavelength demultiplexing and signal detection.

A Design of Push-push Voltage Controlled Oscillator using Frequency Tuning Circuit with Single Transmission Line (단일 전송선로의 주파수 동조회로를 이용한 push-push 전압제어 발진기의 설계 및 제작)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In this paper, a push-push VCDRO (Voltage Controlled Dielectric Resonator Oscillator) with a modified frequency tuning structure is investigated. The push-push VCDRO designed at 16GHz is manufactured using a LTCC (Low Temperature Co-fired Ceramic) technology to reduce the circuit size. The frequency tuning structure is embedded in intermediate layer of A6 substrate by an advantage of LTCC process. Experimental results show that the fundamental frequency suppression is above 30dBc, the frequency tuning range is 0.43MHz over control voltage of 0 to 12V, and phase noise of push-push VCDRO presents a good performance of -103dBc/Hz at 100KHz offset frequency from carrier.

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Implementation of portable multifunction digital compass (휴대용 다기능 디지털 컴퍼스 구현)

  • An, Gwang-Hui;Kim, Hong-Seok
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • Conventional geological survey utilizes the manual compass for mass amount of measurements of the geologic structure. Portable multifunction digital compass system was required by more detailed geological survey, due to increasing construction for rock slopes and runnels. In this paper, the system was implemented by using Intel PXA 255 embedded board as a system controller, and was composed of tilting sensor, digital azimuth sensor, and Global Positioning System (GPS) module. After the measured location, strike, and the angle of dip with our implemented system were transmitted to Personal Digital Assistant (PDA) or notebook, these data could be used for geologic structure analysis. It is expected that the availability of cheap and improved digital compass will reduce the coast and time of geological survey extensively.

  • PDF