• 제목/요약/키워드: Embedded structure

검색결과 1,166건 처리시간 0.03초

회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석 (The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology)

  • 박재용;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

Empirical Study of Dynamic Chinese Corporate Governance Based on Chinese-listed Firms with A Panel VAR Approach

  • Shao, Lin;Zhang, Li;Yu, Xiaohong
    • 산경연구논집
    • /
    • 제8권1호
    • /
    • pp.5-13
    • /
    • 2017
  • Purpose - In this article, a dynamic model like a VAR is an appropriate choice for estimating the possible interrelationship between ownership structure and firm performance as a dynamic process. Research design, data, and methodology - Data of this work are collected from Chinese stock exchange including 350 Chinese-listed firms during the period of 1999-2012. We hypothesize that this interrelationship dynamically exists between ownership structure and firm performance. To examine the correlation, a panel Vector Auto-regression (PVAR) approach generated by GMM method is utilized to test the possible dynamic relation embedded in corporate governance. Another two dynamic analysis solutions such as orthogonalized impulse-response function and variance decomposition are also used simultaneously. Results - Findings of this study indicate the evidence that dynamically endogenous relationship exists between ownership structure and firm performance. Further, there is a dynamical correlation between investment and performance. Impulse response and variance decomposition illustrate that impact of a shock to variables themselves is the main source for their variability. Conclusions - The conclusion in this study is that there is a bidirectional and inter-temporal effect between proportion of ownership and corporate performance for a long run in accordance with impulse response function. Overall, our results suggest that corporate governance in China is more market oriented.

메모리 전송 효율을 개선한 programmable Fragment 쉐이더 설계 (A Design of Programmable Fragment Shader with Reduction of Memory Transfer Time)

  • 박태룡
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2675-2680
    • /
    • 2010
  • 3D 그래픽을 처리하는 연산 과정에는 고정적인 연산만을 수행하는 영역과 Shader 등과 같은 명령어에 의한 프로그래밍이 요구되는 영역이 구분되어 있다. 이러한 3D 파이프라인의 특성을 고려하여 fixed 구조로 설계한 graphics hardware와 명령어 기반의 programmable hardware를 혼합한 구조로 설계하면 효율적인 그래픽 처리가 가능하다. 본 논문에서는 이러한 혼합 구조에 적합한 OpenGL ES(Open Graphics Library Embedded System) 2.0을 지원하는 Fragment Shader를 설계하였다. fixed hardware와 Shader간 데이터 입출력으로 인해 발생할 수 있는 전체 파이프라인의 지연을 줄일 수 있도록 내부 인터페이스를 최적화하였으며 Shader 내부 레지스터 그룹을 interleaved 구조로 설계하여 레지스터 면적과 처리 속도를 개선하였다.

GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석 (Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology)

  • 박재용;박철휴;곽문규;나성수
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs

  • Farokhian, Ahmad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.555-563
    • /
    • 2020
  • The objective of present paper is assessment of dynamic buckling behavior of an embedded sandwich microplates in thermal environment in which the layers are reinforced through functionally graded carbon nanotubes (FG-CNTs). Therefore, mixture rule is taken into consideration for obtaining effective material characteristics. In order to model this structure much more realistic, Kelvin-Voigt model is presumed and the sandwich structure is rested on visco-Pasternak medium. Exponential shear deformation theory (ESDT) in addition to Eringen's nonlocal theory are utilized to obtain motion equations. Further, differential cubature method (DCM) as well as Bolotin's procedure are used to solve governing equations and achieve dynamic instability region (DIR) related to sandwich structure. Different parameters focusing on volume percent of CNTs, dispersion kinds of CNTs, thermal environment, small scale effect and structural damping and their influences upon the dynamic behavior of sandwich structure are investigated. So as to indicate the accuracy of applied theories as well as methods, the results are collated with another paper. According to results, presence of CNTs and their dispersion kind can alter system's dynamic response as well.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

DLSR 카메라의 RAW 이미지 파일 분석 및 임베디드 장치용 RAW 이미지 뷰어 개발 (An Analysis on RAW Image File of DLSR Camera and Development of a RAW Image Viewer for an Embedded Device)

  • 노광현;김승천
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1341-1349
    • /
    • 2011
  • 본 연구에서는 다양한 기종의 DSLR 카메라에서 생성되는 RAW 이미지 파일들의 구조를 분석하고 이를 기반으로 임베디드 플랫폼용 RAW 이미지 뷰어를 개발하였다. DSLR 카메라로 촬영되는 정지 이미지는 JPEG 포맷 혹은 제조사별로 상이한 RAW 이미지 파일 포맷으로 저장매체에 저장된다. RAW 이미지 파일 포맷은 DSLR 카메라 제조사별로 다르고, 해당 포맷에 대한 구체적인 정보가 공개되지 않는 이유로 휴대용 멀티미디어 기기에서 RAW 이미지 재생 기능을 충분히 지원하지 못하고 있는 실정이다. 본 연구에서는 RAW 이미지 파일 포맷인 CRW, CR2, PEF, NEF, MRW에 대한 구조를 분석하였고, 이를 기반으로 PC용 RAW 이미지 파일 분석툴과 WinCE 기반의 임베디드 플랫폼에서 구동되는 RAW 이미지 뷰어를 개발하였다. 개발된 뷰어는 WinCE 기반하에서 5가지 종류의 RAW 이미지를 지원하며, 실험 결과 S3C6410 임베디드 플랫폼에서 RAW 이미지를 로딩하는데 약 10초가 소요되었다. 본 연구에서 개발된 솔루션은 향후 휴대용 멀티미디어기기에서 RAW 이미지를 포함한 다양한 이미지를 활용하는데 적용될 수 있을 것이다.