• Title/Summary/Keyword: Embedded structure

Search Result 1,166, Processing Time 0.023 seconds

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors (슈퍼 커패시터를 위한 WS2-W-WC가 내장된 탄소나노섬유 복합체의 제조)

  • Lee, Yu-Jin;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.116-121
    • /
    • 2015
  • $WS_2$-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, $WS_2$ nanoparticles were used as precursors and the amounts of $WS_2$ precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from $WS_2$ to $WS_2$-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

A Study on the Embedded Capacitor for High Frequency Decoupling (고주파용 디커플링 임베디드 캐패시터에 관한 연구)

  • Hong, Keun-Kee;Hong, Soon-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.918-923
    • /
    • 2008
  • We proposed an embedded capacitor with the unique electrode structure, which electrodes are located on the same plane and dielectric gap was formed by electrodes. We named it 'Gap type EC', and it was analyzed by the FEM(Finite element Method) program tool. The resonant frequency of Cap type EC was obtained at more higher frequency region. Also, resonant frequency was changed with the magnitude and thickness of electrodes. The Gap type EC with the dielectric gap of $50{\mu}m$ showed capacitance density of $55pF/cm^2$. This value is the higher than that of conventional EC. So, we concluded that the Gap type EC can be a good candidate for high frequency decoupling.

A Study on Standard Design Procedure and Optimum Dimension of Embedded Steel-Plate Cell Structure (근입식 강판셀 구조 설계표준화 및 최적제원 결정에 관한 연구)

  • Park, Yong Myung;Kim, Tae Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.259-270
    • /
    • 1999
  • In this study, establishment of standard design procedure and optimum dimension of the embedded steel-plate cellular bulkheads for seawall structures in deep water sites has been presented. A computer program was developed to asses feasible dimensions of steel-plate cell, and general equations to determine optimum cell diameter and embedment depth are derived for sand. A model experiment to verify the necessary driving force of vibratory hammer system was also performed and driving force data pertinent to optimum cell dimension are presented.

  • PDF

An Implementation of SoC FPGA-based Real-time Object Recognition and Tracking System (SoC FPGA 기반 실시간 객체 인식 및 추적 시스템 구현)

  • Kim, Dong-Jin;Ju, Yeon-Jeong;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.363-372
    • /
    • 2015
  • Recent some SoC FPGA Releases that integrate ARM processor and FPGA fabric show better performance compared to the ASIC SoC used in typical embedded image processing system. In this study, using the above advantages, we implement a SoC FPGA-based Real-Time Object Recognition and Tracking System. In our system, the video input and output, image preprocessing process, and background subtraction processing were implemented in FPGA logics. And the object recognition and tracking processes were implemented in ARM processor-based programs. Our system provides the processing performance of 5.3 fps for the SVGA video input. This is about 79 times faster processing power than software approach based on the Nios II Soft-core processor, and about 4 times faster than approach based the HPS processor. Consequently, if the object recognition and tracking system takes a design structure combined with the FPGA logic and HPS processor-based processes of recent SoC FPGA Releases, then the real-time processing is possible because the processing speed is improved than the system that be handled only by the software approach.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

A Design and Control Scheme of a High Efficiency Hybrid PM Generator (고효율 하이브리드 영구자석 발전기의 설계 및 제어방식)

  • Jo, Yeongjun;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.112-120
    • /
    • 2018
  • This work presents a hybrid generator, which is a combination of a permanent magnet (PM) and winding structure with a PM exciter. The field winding of the proposed hybrid generator is fed by the PM exciter and the embedded current controller, which is installed in the generator shaft. In the no-load condition, the output voltage of the generator is produced by the PM flux of the generator without any field winding current. The field winding current produces an insufficient flux to retain the output voltage of the generator when the load is injected. The total efficiency can be increased from the PM exciter and PM flux of the generator. The field current has to be controlled inside the proposed generator. The generated power from the PM exciter is used to excite the field flux of the generator. The embedded current controller is commanded by the external voltage controller using the infrared wireless method. The 10 kW prototype hybrid PM generator is designed and tested to verify the effectiveness of the proposed system. The experimental results are compared with those of the winding generator with PM exciter.