• Title/Summary/Keyword: Embedded memory

Search Result 723, Processing Time 0.025 seconds

Implementation of XIP Functionality in Embedded Linux with Ramdisk (Ramdisk를 사용하는 Embedded Linux System에서의 XIP 구현에 대한 연구)

  • 정동환;김문회;이창훈;박호준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.115-117
    • /
    • 2001
  • 대부분의 embedded system에서 hard-disk 대용으로 flash memory를 사용하고 있으며, flash device에 압축 커널이미지와 root file system image를 가지고 있다. Booting 고정 중 커널의 압축이 풀리고 메모리에 로드되어 제어를 넘겨받으면 flash memory 상에 존재하는 root file system image를 ramdisk의 image로 로드하여 시스템은 결국 ramdisk에 root file system을 가지게 된다. Ramdisk 상의 프로그램을 실행하기 위해 메모리로 실행파일 이미지를 copy하는 과정을 피하고 ramdisk 상의 이미지를 바로 프로세스의 virtual memory area에 직접 매핑 시켜 주는 XIP(eXection-In-Place)를 구현함으로써 많은 메모리 절감 효과를 얻을 수 있다. 본 연구에서는 ramdisk를 root file system으로 사용하는 embedded system에서의 XIP 구조를 설계하고 구현하였다.

Charge retention characteristics of silicon nanocrystals embedded in $SiN_x$ layer for non-volatile memory devices (비휘발성 메모리를 위한 실리콘 나노 결정립을 가지는 실리콘 질화막의 전하 유지 특성)

  • Koo, Hyun-Mo;Huh, Chul;Sung, Gun-Yong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.101-101
    • /
    • 2007
  • We fabricated floating gate non-volatile memory devices with Si nanocrystals embedded in $SiN_x$ layer to achieve higher trap density. The average size of Si nanocrystals embedded in $SiN_x$ layer was ranging from 3 nm to 5 nm. The MOS capacitor and MOSFET devices with Si nanocrystals embedded in $SiN_x$ layer were analyzed the charging effects as a function of Si nanocrystals size.

  • PDF

Design of a NAND Flash Memory File System to Improve System Boot Time

  • Park, Song-Hwa;Lee, Tae-Hoon;Chung, Ki-Dong
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.147-152
    • /
    • 2006
  • NAND flash memory-based embedded systems are becoming increasingly common. These embedded systems have to provide a fast boot time. In this paper, we have designed and proposed a flash file system for embedded systems that require fast booting. By using a Flash Image Area, which keeps the latest flash memory information such as types and status of all blocks, the file system mounting time can be reduced significantly. We have shown by experiments that our file system outperforms YAFFS and RFFS.

Built-In Redundancy Analysis Algorithm for Embedded Memory Built-In Self Repair with 2-D Redundancy (내장 메모리 자가 복구를 위한 여분의 메모리 분석 알고리즘)

  • Shim, Eun-Sung;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.113-120
    • /
    • 2007
  • With the advance of VLSI technology, the capacity and density of memories is rapidly growing. In this paper we proposed reallocation algorithm. All faulty cell of embedded memory is reallocated into the row and column spare memory. This work implements reallocation algorithm and BISR to verify its design.

A Design of KVM Heap Memory Management for Effective Power Management in Banked Memory System (Banked Memory System에서 효율적일 전력관리를 위한 KVM의 힙 메모리 관리체계 설계)

  • Choi In-Bum;kang Hui-Sung;Jeong Myung-Jo;Lee Cheol-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.868-870
    • /
    • 2005
  • 최근에는 자원이 제한적인 시스템을 위한 embedded JVM 환경에서 자바 응용 프로그램을 수행할 때 embedded JVM 의 성능에 따른 performance 뿐만 아니라 에너지 소비를 줄이는 일이 크게 대두되고 있다. 메모리에서 사용되는 에너지는 메모리에 접근할 때마다 소비되는 dynamic energy와 메모리에 파워가 들어와 있을 때 항상 소비되는 leakage energy 로 구분할 수 있다. embedded 환경을 고려하지 않았던 이전에는 leakage energy 가 중요한 부분으로 인식되지 않았지만, 현재는 dynamic energy 못지 않게 중요한 부분으로 인식되고 있다. 본 논문에서는 Banked Memory System을 사용하는 임베디드 JVM의 환경하에서 leakage energy를 효과적으로 줄일 수 있는 KVM의 힙 메모리 관리체계를 설계하였다.

  • PDF

Memory Usage Based Device Frequency Adjustment for an Embedded Linux System (임베디드 리눅스 환경에서 메모리 사용량에 근거한 에너지 효율적 디바이스 주파수 변경 기법)

  • Jang, Jaehyeon;Park, Moonju
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.10
    • /
    • pp.513-520
    • /
    • 2016
  • As IoT devices become more common in the public sphere, the energy efficiency of embedded systems becomes a problem of major interest in addition to the system performance. Energy efficiency is important for portable embedded systems because they obtain power from their battery, and a low energy efficiency will result in a low usage time while a high energy efficiency will allow for longer usage time. In this paper, we propose a memory usage based frequency selection method to improve the energy efficiency of embedded Linux systems by using devfreq to select the device's system frequency. In our experiments, we found that the proposed method reduces energy consumption in an embedded device by up to 18%.

Automatic Dynamic Memory Management Techniques for Memory Scarce Java system (메모리가 적은 자바 시스템을 위한 자동 동적 메모리 관리 기법)

  • Choi, Hyung-Kyu;Moon, Soo-Mook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.378-384
    • /
    • 2008
  • Many embedded systems are supporting Java as their software platform via Java virtual machine. Java virtual machine manages memory automatically by providing automatic memory management, i.e. garbage collector. Because only scarce memory is available to embedded system, Java virtual machine should use small memory and manage it efficiently. This paper introduces two memory management techniques to exploit small memory in Java virtual machine which can execute multiple Java applications concurrently. First, compaction based garbage collection is introduced to overcome external fragmentation problem in presence of immovable memory area. Then garbage collector driven class unloading is introduced to reduce memory use of unnecessary loaded classes. We implemented these techniques in working embedded system and observed that they are very efficient, since more Java applications are able to be executed concurrently and memory use is also reduced with these techniques.

A Study for Protecting the Virtual Memory of Applications (어플리케이션의 가상 메모리 보호를 위한 연구)

  • Kim, Dong-Ryul;Moon, Jong-sub
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.335-341
    • /
    • 2016
  • As information technology advances rapidly, various smart devices are becoming an essential element in our lives. Smart devices are providing services to users through applications up on the operating system. Operating systems have a variety of rules, such as scheduling applications and controlling hardwares. Among those rules, it is significant to protect private information in the information-oriented society. Therefore, isolation task, that makes certain memory space separated for each application, should highly be guaranteed. However, modern operating system offers the function to access the memory space from other applications for the sake of debugging. If this ability is misused, private information can be leaked or modified. Even though the access authority to memory is strictly managed, there exist cases found exploited. In this paper, we analyze the problems of the function provided in the Android environment that is the most popular and opened operating system. Also, we discuss how to avoid such kind of problems and verify with experiments.

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.

Technology of the next generation low power memory system

  • Cho, Doosan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.6-11
    • /
    • 2018
  • As embedded memory technology evolves, the traditional Static Random Access Memory (SRAM) technology has reached the end of development. For deepening the manufacturing process technology, the next generation memory technology is highly required because of the exponentially increasing leakage current of SRAM. Non-volatile memories such as STT-MRAM (Spin Torque Transfer Magnetic Random Access Memory), PCM (Phase Change Memory) are good candidates for replacing SRAM technology in embedded memory systems. They have many advanced characteristics in the perspective of power consumption, leakage power, size (density) and latency. Nonetheless, nonvolatile memories have two major problems that hinder their use it the next-generation memory. First, the lifetime of the nonvolatile memory cell is limited by the number of write operations. Next, the write operation consumes more latency and power than the same size of the read operation.These disadvantages can be solved using the compiler. The disadvantage of non-volatile memory is in write operations. Therefore, when the compiler decides the layout of the data, it is solved by optimizing the write operation to allocate a lot of data to the SRAM. This study provides insights into how these compiler and architectural designs can be developed.