• Title/Summary/Keyword: Embedded control unit

Search Result 140, Processing Time 0.024 seconds

Source localization of impact noise on an indoor unit of air-conditioner (에어컨 실내기에서 발생하는 충격 소음원의 위치 추정)

  • 최영철;김양한;이종구;김구영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.324-329
    • /
    • 2003
  • An air-conditioner has various noise sources such as cooling fan noise, pumping noise, flow noise and impact noise. Among these, impact noise is the most unpleasant source. This is because the noise is produced in indoor unit of air-conditioner. To control the noise source effectively, first we must identify the noise sources. When we identify impact noise source, the measurement have to be carried out simultaneously. So we use beamforming method that requires less measurement points than intensity method and acoustic holography. The objective of this paper is to estimate the location of impact source. This objective can be achieved by using minimum variance cepstrum that is able to detect impulse embedded in noise. In this study, modified beamforming method based on cepstrum domain is proposed. Then this method applied to air-conditioner noise sources which produce impact noise.

  • PDF

Hardware-In-the-Loop Simulation of ECU using Reverse Engineering (역공학을 이용한 ECU의 Hardware-In-the-Loop Simulation)

  • Park, Ji-Myoung;Ham, Won-Kyung;Ko, Min-Suk;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Increasing the proportion of an embedded system in automotive industry, test methods for evaluation and fault detection of the embedded system have been researched. HILS is a test method that is used in the development and test of complex real-time embedded systems. In this study, we defined the HILS method of the ECU, one of the embedded systems used in automobiles. Our method is to create a test model that can provide a virtual vehicle environment to the ECU on the basis of the actual vehicle data. The test model has reference information that can transmit the sensor signal and CAN Message into the ECU from HILS tester. In this study, the HILS can detect faults of the target ECU.

A wireless decentralized control experimental platform for vibration control of civil structures

  • Yu, Yan;Li, Luyu;Leng, Xiaozhi;Song, Gangbing;Liu, Zhiqiang;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • Considerable achievements in developing structural regulators as an important method for vibration control have been made over the last few decades. The use of large quantities of cables in traditional wired control systems to connect sensors, controllers, and actuators makes the structural regulators complicated and expensive. A wireless decentralized control experimental platform based on Wi-Fi unit is designed and implemented in this study. Centralized and decentralized control strategies as sample controllers are employed in this control system. An optimal control algorithm based on Kalman estimator is embedded in the dSPACE controller and the DSP controller. To examine the performance of this control scheme, a three-story steel structure is developed with active mass dampers installed on each floor as the wireless communication platform. Experimental results show that the wireless decentralized control exhibits good control performance and has various potential applications in industrial control systems. The proposed experimental system may become a benchmark platform for the validation of the corresponding wireless control algorithm.

A Novel Picometer Positioning System for Machine Tools and Measuring Machines

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiroh;Tazoe, Yoichi;Kami, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.123-128
    • /
    • 2005
  • A novel tri-mode ultraprecision positioning system for machine tools and measuring machine is proposed. The basic coarse mode uses a Twist-roller Friction Drive (abbr. TFD), and controls several tens of millimeters of the machine-table travel with nanometer order of positioning resolution. The fine mode also utilizes the TFD with a fine adjusting mechanism. The resolution of the fine mode is in the range of sub-nanometer. For realizing picometer positioning, the ultra-fine mode is executed by using an active aerostatic guideway. On the bearing surface of this active guideway, several Active Inherent Restrictors (abbr. AIRs) are embedded for controlling the table position. An AIR unit consists of a piezoelectric actuator having a through hole, one end of the hole on the bearing surface acts as an inherent restrictor. Owing to the aerostatic mechanism of the AIR, the deformation of the piezoelectric actuator in the AIR unit causes much reduced table displacement. Such motion reduction is effective for ultraprecision positioning. Current positioning resolution of the ultra-fine mode is 50pm, however the final goal of the positioning resolution is expected to be in the order of picometer.

  • PDF

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.

Design of Creep Function for Forklift Automatic Transmission (지게차 자동변속기 저속주행기능 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • A forklift is a powered industrial vehicle used to lift and move materials over short distances. Nowadays, almost all forklifts are equipped with an automatic transmission due to its improved operator comfort and increased productivity. Thanks to marked improvement of transmission control unit equipped with highly-advanced microcontrollers, recently developed automatic transmission for forklift have various auxiliary functions such as creep, auto retardation, and automatic shift with excellent shift quality. This paper deals with the creep function which enables one to maneuver a forklift at the designated low speed by slip control of clutches. The design of creep function was based on four modes of creep operation depending on the status of the operator's shift lever and accelerator pedal. Control algorithms and control parameters for each mode were designed to achieve the desired static and dynamic performance. Vehicle test for the designed creep function was carried out with an independently developed embedded controller. Test results confirmed good creep speed control without speed error at a steady state with a mild shift shock during mode changes by stepping or releasing the accelerator.

IPMSM Vector Control using MPC5554 for HEV (MPC5554를 이용한 HEV용 IPMSM 벡터제어)

  • Moon, Jung-Song;Lee, Jung-Hyo;Ha, In-Yong;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.213-219
    • /
    • 2010
  • MCU(Micro Controller Unit) used for the automobiles has been required for improving of the safety and high reliability. Also, the necessity of high performance MCU equipped with high fuel-efficiency has been risen according to increased requests of high fuel-efficiency and improving the occupants safety with the development of intelligent vehicles and future vehicles. The MPC5554 32-bit embedded controller, made by Freescale Semiconductor, specialized in the part of the power train provides the high reliability, fast interrupt process and real-time control. In This paper, the investigation on IPMSM using MPC5554 has been performed. Also SVPWM(Space Vector Pulse Width Modulation) is implemented to the servo system.

  • PDF

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

Development of a Powered Knee Prosthesis using a DC Motor (DC 모터를 이용한 동력 의족 시스템 개발)

  • Kim, Won-Sik;Kim, Seuk-Yun;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.193-199
    • /
    • 2014
  • In this paper, we present an overview of the structure of a lab-built powered knee prosthesis and the control of it. We build a powered prosthesis prototype on the basis of previous researches and aim at obtaining the essential technology related with its control. We adopt the slider-crank mechanism with a DC motor as an actuator to manipulate the knee joint. We also build an embedded control system for the prosthesis with a 32-bit DSP controller as a main computation unit. We divide the gait phase into five stages and use a FSM (Finite State Machine) to generate a torque reference needed for each stage. We also propose to use a position-based impedance controller for driving the powered knee prosthesis stably. We perform some walking experiments at fixed speeds on a tread mill in order to show the feature of the built powered prosthesis. The experimental results show that our prosthesis has the ability to provide a functional gait that is representative of normal gait biomechanics.