• Title/Summary/Keyword: Embankment construction

Search Result 345, Processing Time 0.027 seconds

Lateral Earth Pressure Caused by Action on Earth Retaining Wall in Clay Foundation Ground with Consideration of Construction Speed (지중 구조물에 작용하는 측방토압에 대한 성토 재하 속도의 영향)

  • Im Eun-Sang;Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.57-68
    • /
    • 2004
  • When an embankment is constructed on soft clay ground, the lateral displacement generally called as lateral flow is generated in the foundation ground. It strongly affects stabilities of structures, such as foundation piles and underground pipes, in and on the foundation ground. The lateral earth pressure induced by the lateral flow is influenced by the magnitude and construction speed of embankment, the geometric conditions and geotechnical characteristics of the embankment, and the foundation ground, and so on. Accurate methods for estimating the lateral earth pressure have not ever been established because the lateral flow of a foundation ground shows very complicated behavior, which is caused by the interaction of shear deformation and volumetric deformation. In this paper, a series of model tests were carried out in order to clarify effects of construction speed of an embankment on the lateral earth pressure in a foundation ground were design. It was found that the magnitude and the distribution of the lateral earth pressure and its change with time are dependent on the construction speed of the embankment. It was found that a mechanism for the lateral earth pressure was generated by excess pore water pressure due to negative dilatancy induced by shear deformation under the different conditions of construction speeds of embankments.

Soil arching analysis in embankments on soft clays reinforced by stone columns

  • Fattah, Mohammed Y.;Zabar, Bushra S.;Hassan, Hanan A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.507-534
    • /
    • 2015
  • The present work investigates the behavior of the embankment models resting on soft soil reinforced with ordinary and stone columns encased with geogrid. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios (L/d) of the stone columns, in addition to different embankment heights. A total number of 42 model tests were carried out on a soil with undrianed shear strength $${\sim_\sim}10kPa$$. The models consist of stone columns embankment at s/d equal to 2.5, 3 and 4 with L/d ratio equal 5 and 8. Three embankment heights; 200 mm, 250 mm and 300 mm were tested for both tests of ordinary (OSC) and geogrid encased stone columns (ESC). Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in soft soil directly. The performance of stone columns embankments relies upon the ability of the granular embankment material to arch over the 'gaps' between the stone columns spacing. The results showed that the ratio of the embankment height to the clear spacing between columns (h/s-d) is a key parameter. It is found that (h/s-d)<1.2 and 1.4 for OSC and ESC, respectively; (h is the embankment height, s is the spacing between columns and d is the diameter of stone columns), no effect of arching is pronounced, the settlement at the surface of the embankment is very large, and the stress acting on the subsoil is virtually unmodified from the nominal overburden stress. When $(h/s-d){\geq}2.2$ for OSC and ESC respectively, full arching will occur and minimum stress on subsoil between stone columns will act, so the range of critical embankment height will be 1.2 (h/sd) to 2.2 (h/s-d) for both OSC and ESC models.

Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming

  • Evren, Seyrek;Sadettin, Topcu
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.637-651
    • /
    • 2022
  • The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.

Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground (침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가)

  • Lee, Il-Wha;Kang, Tae-Ho;Lee, Su-Hyung;Lee, Sung-Jin;Bang, Eui-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

A Study on the Settlement Characteristics of Fill Dam (FILL DAM의 침하특성(沈下特性)에 관(關)한 연구(硏究))

  • Moon, Tae Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.282-291
    • /
    • 1985
  • In order to investigate the settlement characteristics of fill dam with decomposed granite is used as a embankment material instead of conventional clay collected behavoir of Andong dam and analyzed. Andong dam is the use of decomposed granite in the embankment material, and various type of gauges were installed in dam to measure a pore pressure, interval vertical settlement, dam crest settlement, relative settlement, surface settlement and internal horizontal movement. The results were summerized as follows; 1. With the increase of embankment loading, the settlement of core zone during construction increased with linear and under the effective stress $7kg/cm^2$ vertical settlement ratio ranged between 0.1 and 0.8% approximately and showed smaller value than that of fill dam with clay were used as a embankment material. 2. Though embankment loading was increased with about over central part of embankment height, the settlement of core zone in the lower part of the embankment was influenced slightly. 3. Pore pressure responsed sensitively with the increase of coefficient of permeability in core zone and settlement increased with pore pressure were dispersed. 4. During construction relative settlement in the lower part of the embankment has the largest influence on magnitude of the relative density and after construction settlement showed larger value in the core zone which has the largest compression height. 5. Settlement distribution of dam crest showed larger value in the central part, maximum section of dam, but smaller value in near the abutment.

  • PDF

A Study on Geotechnical Centrifuge Testing Method for Seismic Performance Evaluation of Large Embankment Dams (대형 댐의 지진응답특성평가를 위한 원심모형시험 기법 연구)

  • Kim, Nam-Ryong;Lim, Jeong-Yeul;Im, Eun-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Damages of large embankment dams by recent strong earthquakes in the world highlight the importance of seismic security of dams. Some of recent dam construction projects for water storage and hydropower are located in highly seismic zone, hence the seismic performance evaluation is an important issue. While state-of-the-art numerical analysis technology is generally utilized in practice for seismic performance evaluation of large dams, physical modeling is also carried out where new construction technology is involved or numerical analysis technology cannot simulate the behavior appropriately. Geotechnical centrifuge modeling is widely adopted in earthquake engineering to simulate the seismic behavior of large earth structures, but sometimes it can't be applied for large embankment dams due to various limitations. This study proposes a dynamic centrifuge testing method for large embankment dams and evaluated its applicability. Scaling relations for a case which model scale and g-level are different could be derived considering the stress conditions and predominant period of the structure, which is equivalent to previously suggested scaling relations. The scaling principles and testing method could be verified by modified modeling of models using a model at different acceleration levels. Finally, its applicability was examined by centrifuge tests for an embankment dam in Korea.

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam (필댐의 파이핑 재현시험시 전기비저항 변화 분석)

  • Ahn, Hee-Bok;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.59-68
    • /
    • 2010
  • Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

Permeability Influence of Base Soil for Analysis of Road Landfill Stability (도로성토사면의 안정성 분석시 원지반 투수성의 영향)

  • Kim, Young-Muk;Kim, Chung-Ki;Kim, Man-Goo;Kim, Geon-Hae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.890-897
    • /
    • 2005
  • Stability of embankment is influenced on landfill condition, permeability, shear strength and soil engineering propensity and so on, and need examination in reply because is different according to change of soil property of foundation ground and permeability condition. Analyzed seepage behaviour by finite element method for embankment, and change permeability of base to analyze effect that permeability of ground water table formation before embankment and analyze seepage behaviour to typical embankment in this research. In the case of permeability of foundation ground is 10 more than landfill permeability, rise of groundwater table was changed slightly. Pore water pressure was decreased slowly in landfill after rainfall. The effect of permeability of foundation ground was effected in change of pore water pressure. For permeability of foundation ground is 10 more than landfill, stability of road landfill was small changed during rainfall. But in the case of permeability of base soil similar to landfill permeability, road landfill stability was large decreased during rainfall.

  • PDF

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF