• Title/Summary/Keyword: Embankment Material

Search Result 134, Processing Time 0.026 seconds

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam (필댐의 파이핑 재현시험시 전기비저항 변화 분석)

  • Ahn, Hee-Bok;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.59-68
    • /
    • 2010
  • Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (I))

  • Yang, Shin-Chu;Moon, Jae-Suk;Lee, Hyun-Jung;Kang, Dae-Woong;Kim, Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.644-651
    • /
    • 2006
  • An application of concrete track is being actively processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance ire, but is very difficult system to maintain after earthwork settlement occurred. Therefore, the management and control of embankment and foundation settlement is very important for the successful concrete track construction. We expect that the main part of the settlement of the concrete track is the one of embankment and foundation supporting it. Settlements vulnerable to the concrete track among the causes of lots of settlements are primary consolidation and secondary compression settlement of foundation, creep settlement of embankment, settlement caused by train load, and unequal settlement resulting from the difference of embankment material and construction process. This paper investigated the settlement causes to make badly effects on the concrete track and also evaluated the settlement with field tests and numerical analysis.

Behaviour of Embankment using Bottom Ash-Tire Shred Mixture (저회(Bottom Ash)와 폐타이어를 활용한 성토구조물 거동에 관한 연구)

  • Lee, Sung Jin;Shin, Min ho;Koh, Tae hoon;Hwang, Seon Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.21-31
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material (soil) with bottom ash. Therefore, we carried out the field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials. In these tests, we could assess the settlement, earth pressure, stress-strain relation, vibration of large scale embankment which were made with tire shred-bottom ash mixture and the conventional fill material(weathered soil) respectively. The earthpressure and vibration transmission was decreased and the settlement behaviour of the 2 materials (tire shred mixture and weathered soil) was measured similarly under static/cyclic loading condition.

A Study on Filter Performance of Materials in Embankment Slope during Heavy Rain (강우시 성토사면 재료의 필터조건검토에 대한 연구)

  • Kim, Sang-Hwan;Mha, Ho-Seong
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents the characteristics of internal erosion of embankment slopes due to the localized heavy rain. In this study, the existing analysis methods of filter performance in embankment materials were reviewed. Based on the theoretical concept of filter conditions to prevent particles from being carried in from the adjacent embankment materials, new analysis method was suggested. According to the new analysis method for filter performance, experimental programs were carried out to investigate the filter performance for controlling and sealing any leak which develops through the embankment materials as a result of internal erosion. Three sets of small scale laboratory tests were carried out with changing the main influence factors such as rainfall intensity, gradient of slope, embankment material condition. It was found that the new analysis method for filter performance to prevent particles from being carried in from the adjacent embankment materials was more capable approach to design the filter materials in embankment slopes. The new criterion or method for satisfactory filter performance, therefore, was recommended.

  • PDF

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

Experimental Study on the Sand and Gravel Embankment in Winter Season (사역재료의 동기성토에 관한 실험적연구)

  • 이형수
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 1973
  • This paper describes the study and test for sand and gravel embankment in winter season and also contribute to the development of construction method for the practical purposes. In order to make possible sand and gravel embankment in winter season, at first, the following eriteria on work are given under the normal weather condition: 1) The maximum diameter of material shall not exceed 30cm and sand content which is the ratio of the weight of sand to gravel shall not exceed 60% 2) Spreading depth shall not exceed 60cm each layer of material shall be compacted by over 6 times passing by thell ton smooth drum type of uibratory roller and the relative density shall exceed 60% In addition to the above conditions, the following criteria are given as winter season condition. 3) Sand contsnt shall not exceed 25%, and water content shall not exceed 4% 4) Dwing construction, the air temperature should be $70^{\circ}C$ below zero at minimum and $3^{\circ}C$ below zero onthe average and all the construction work should he continued without intersuptions. With above criteria, it is come to a conclusion that the conclusion that the construction of sand and gravel embankment in winter season will be done satisfactorily without any difficulty. On the basis of these criteria an actual construction was practiced and it was proved that those criteria are applicable to actual embankment of materials.

  • PDF

Analysis of Non-Darcy Flour in Tide Embankment (호안제체에서 Non-Darcy 흐름해석)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • The simulation results using i- V relationship of non-Darcy flow through tide embankment by Li et al.(1998) agree well to the observed data. The use of i- V relationship is applicable to the engineering practice and the correct input of porosity is necessary. The non-Darcy flow based on the pipe flow and Taylor's definition for mean hydraulics radius in rockfill material is applicable to the block and caisson materials. The correct calculation of flow through tide embankment enables the accurate calculation of velocity at final closing gap and the prediction of inner water level after tide embankment construction as well.

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

Centrifuge Model Experiments on Behaviour Characterisitc in Forced Replacement Method (강제치환 거동특성에 관한 원심모형실험)

  • Lee, Jong-Ho;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.131-137
    • /
    • 2003
  • This thesis is results of centrifuge model experiments to investigate the behavior of replacement method in dredged and reclaimed ground. For experimental works, centrifuge model tests were carried out to investigate the behavior of replacement method in soft clay ground. Basic soil property tests were performed to find mechanical properties of clay soil sampled from the southern coast of Korea which was used for ground material in the centrifuge model tests. Reconstituted clay ground of model was prepared by applying preconsolidation pressure in 1g condition with specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50g. Replacing material of leads having a certain degree of angularity was used and placed until the settlement of embankment of replacing material was reached to the equilibrium state. Vertical displacement of replacing material was monitored during tests. Depth and shape of replacement, especially the slope of penetrated replacing material and water contents of clay ground were measured after finishing tests. Model tests of investigating the stability of embankment after backfilling were also performed to simulate the behavior of the dike treated with replacement and backfilled with sandy material. As a result of centrifuge model test, the behavior of replacement, the mechanism of the replacing material being penetrated into clay ground and depth of replacement were evaluated.

  • PDF